UAlberta at SemEval-2021 Task 2: Determining Sense Synonymy via Translations

Bradley Hauer, Hongchang Bao, Arnob Mallik, Grzegorz Kondrak


Abstract
We describe the University of Alberta systems for the SemEval-2021 Word-in-Context (WiC) disambiguation task. We explore the use of translation information for deciding whether two different tokens of the same word correspond to the same sense of the word. Our focus is on developing principled theoretical approaches which are grounded in linguistic phenomena, leading to more explainable models. We show that translations from multiple languages can be leveraged to improve the accuracy on the WiC task.
Anthology ID:
2021.semeval-1.101
Volume:
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
Month:
August
Year:
2021
Address:
Online
Editors:
Alexis Palmer, Nathan Schneider, Natalie Schluter, Guy Emerson, Aurelie Herbelot, Xiaodan Zhu
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
763–770
Language:
URL:
https://aclanthology.org/2021.semeval-1.101
DOI:
10.18653/v1/2021.semeval-1.101
Bibkey:
Cite (ACL):
Bradley Hauer, Hongchang Bao, Arnob Mallik, and Grzegorz Kondrak. 2021. UAlberta at SemEval-2021 Task 2: Determining Sense Synonymy via Translations. In Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 763–770, Online. Association for Computational Linguistics.
Cite (Informal):
UAlberta at SemEval-2021 Task 2: Determining Sense Synonymy via Translations (Hauer et al., SemEval 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.semeval-1.101.pdf
Data
OpenSubtitlesWiC