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Abstract

This paper presents our submitted system to
SemEval 2021 Task 4: Reading Comprehen-
sion of Abstract Meaning. Our system uses
a large pre-trained language model as the en-
coder and an additional dual multi-head co-
attention layer to strengthen the relationship
between passages and question-answer pairs,
following the current state-of-the-art model
DUMA. The main difference is that we stack
the passage-question and question-passage at-
tention modules instead of calculating paral-
lelly to simulate re-considering process. We
also add a layer normalization module to im-
prove the performance of our model. Fur-
thermore, to incorporate our known knowl-
edge about abstract concepts, we retrieve the
definitions of candidate answers from Word-
Net and feed them to the model as extra in-
puts. Our system, called WordNet-enhanced
DUal Multi-head Co-Attention (WN-DUMA),
achieves 86.67% and 89.99% accuracy on the
official blind test set of subtask 1 and subtask
2 respectively.

1 Introduction

Recently, there has been an increasing interest on
Machine Reading Comprehension (MRC). While
most MRC studies such as CNN/Daily Mail (Her-
mann et al., 2015) focus on concrete concepts, Se-
mEval 2021 Task 4, Reading Comprehension on
Abstract Meaning (ReCAM), targets abstract con-
cept understanding, including imperceptibility in
subtask 1 and nonspecificity in subtask 2. The for-
mer, imperceptibility, highlights the abstract words
that refer to ideas and concepts that do not corre-
spond directly to human perception. The latter is
for hypernyms and abstract concepts such as the
class of vertebrate which includes whales as a con-
crete subclass (Changizi, 2008).

*Equal contribution.

Figure 1: An example of ReCAM subtask 1.

In this task, given news fragments and incom-
plete abstracts, the machine needs to select the
most suitable abstract words from candidate an-
swers. Figure 1 shows one example of ReCAM
subtask 1. Passage is the news sections and Ques-
tion is a human written summary in which abstract
words have been removed. Machines are requested
to choose abstract words from five candidates for
replacing @placeholder.

For this shared task, we regard both subtasks
as multi-choice MRC tasks. Various deep neural
networks and attention mechanisms (e.g. (Dhin-
gra et al., 2017; Wang et al., 2018; Zhang et al.,
2020a,b; Jin et al., 2020)) have been proposed
to address these tasks. In our work, follow-
ing the state-of-the-art model DUMA (Zhu et al.,
2020), we adopt a Pre-trained Language Model
(PrLM) as encoder and extend with an additional
dual multi-head co-attention layer to strengthen
the relationship between passages and question-
answer pairs. For the dual multi-head attention
layer, while DUMA builds passage-question and
question-passage attention modules in a parallel
way to simulate the transposition thinking process,
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our model stacks two attention modules in order to
simulate the process of re-considering for a deeper
understanding of the passage. More details on our
attention calculation process can be found in Sec-
tion 2. Furthermore, we add an additional layer
normalization module immediately after the atten-
tion module. From our experiments, we found that
this additional normalization module definitely im-
proves our model’s performance.

Our most significant design decision is to use
WordNet (Miller, 1995) to expand on the abstract
concepts in the candidate answers. Intuitively, ex-
panding an abstract concept according to its defi-
nition in a dictionary should help as it helps relate
the abstract concept with others that may occur
in the text. A key conclusion that we can draw
from our experiments is that this is indeed the case.
One problem that we encountered when implement-
ing this idea was that most English words have
multiple entries in WordNet. For example, bank
in WordNet can have Noun definitions as well as
Verb definitions. We addressed this problem by
using some heuristics and some additional infor-
mation such as part-of-speech labels. Because of
the significant role played by WordNet, we call
our system WordNet-enhanced DUal Multi-head
Co-Attention (WN-DUMA).

We remark that our system did not use any ad-
ditional training data for the tasks. In the final
evaluation, our model is ranked 10 out of 23 and
9 out of 28 on the official subtask 1 and subtask 2
blind test set with 86.67% and 89.99% accuracy,
respectively. The code for our model is publicly
available1.

The rest of the paper is organized as follows.
Section 2 gives the details of our system. Section
3 describes our experimental setup including the
datasets and hyper parameters used for training.
Section 4 presents experimental results. Section 5
concludes this paper with some final remarks.

2 System Description

In this section, We describe the framework of our
end-to-end model WN-DUMA. Figure 2 depicts
the detailed architecture of our approach, with in-
puts at the bottom and outputs at the top.

WordNet-enhanced Encoder We regard both
subtask 1 and 2 as multi-choice MRC problems.
Such a problem includes a passage, a question with

1https://github.com/zzshou/RCAM

Figure 2: The overall model architecture.

a @placeholder, and 5 candidate answers to choose
from. First, we replace @placeholder in the ques-
tion with the given 5 candidate answers to form
5 options. In the tasks, the candidate answers are
all single words with abstract meanings, so we de-
cided to add some extra knowledge from WordNet
(Miller, 1995) to help the system better understand-
ing the abstract meanings. More specifically, for a
single candidate answer, we find its part-of-speech
tag based on the option it’s located in, and extract
its definitions under this part-of-speech tag. After
tokenization, every instance is cast into the input
form: [CLS] passage [SEP] option + answer def-
inition [SEP]. To encode input tokens into repre-
sentations, we feed them through a PrLM based on
Transformer to obtain sequence embeddings, which
draws a global relationship between the passage
and the option-definition.

Dual Multi-head Co-Attention Layer Based
on the above process, we further separate the out-
put representations from transformer encoder to
acquire the passage context embeddings EP ∈
Rdmodel×lp and the context embeddings of option-

https://github.com/zzshou/RCAM
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definition EOD ∈ Rdmodel×lod , where lp, lod de-
note the maximum length of passage and option-
definition respectively. Then based on the bi-
directional matching network of DUMA which is
quite similar to the multi-head self-attention mod-
ule in vanilla transformer block (Vaswani et al.,
2017), we first take EOD as Query, EP as Key
and Value to calculate one of the co-attention repre-
sentations, which simulates the process of human
re-reading the passage with impression of option
and definition. The formulas are listed as follows:

Qi = EODWQ
i (1)

Ki = EPWK
i (2)

Vi = EPW V
i (3)

headi = softmax(
QiK

T
i√

dk
)Vi (4)

MHA = Concat(head1, ..., headh)W
O (5)

REP1 = Normalize(EOD +MHA) (6)

where WQ
i ∈ Rdmodel×dq , WK

i ∈ Rdmodel×dk ,
W V

i ∈ Rdmodel×dv , WO
i ∈ Rhdv×dmodel are

linear transformations with learnable parameters,
dq, dk, dv denote the dimension of Query, Key and
Value, h denotes the number of heads. Different
from the structure of DUMA, here we make two
changes: 1) apply ”Add and Normalize” after get-
ting the multi-head attention representation, which
could result in more stable training. 2) compute an-
other co-attention representation by stacking rather
than paralleling: take the acquired REP1 as Key
and Value, EP as Query, which simulates the pro-
cess of re-considering the option-definition with
deeper understanding of the passage. Finally, we
obtain REP1 and REP2, which have the same di-
mension as EOD and EP , respectively. As a result,
we can stack the co-attention module for k layers.

Classifier Here the co-attention representations
REP1 and REP2 are merged and used for final
classification:

I1 = AvgPool(REP1) (7)

I2 = AvgPool(REP2) (8)

M = Concat(I1, I2) (9)

logits = MWM (10)

where I1, I2 ∈ Rdmodel , M ∈ R2dmodel ,
WM ∈ Rdmodel×nclass denotes the one-layer fully-
connected neural network, nclass denotes the num-
ber of candidate answers. Consequently, for a sin-
gle instance, we could get as many logits as the

Task 1 Task 2
Train 3,227 3,318
Dev 837 851
Test 2,025 2,017

Avg. passage length 270.3 429.7
Avg. question length 24.6 27.1

Vocabulary size 16,318 17,006
Answer vocabulary size 4,333 4,775

Table 1: Basic statistics of subtask 1 and subtask 2
dataset.

candidate answers, which are used to compute the
corss-entropy loss by softmax.

3 Experimental Setup

Data and Metric We used the official datasets
(Zheng et al., 2021) provided by SemEval 2021
Task 4 competition. They were collected from BBC
News in English language. Some basic statistics
are listed in Table 1. According to the requirement
of the organizers, participants could only use the
corresponding dataset for a specific subtask to build
models to ensure fairness. For better performance,
technics like multi-task learning (Wan, 2020) are
recommended for MRC tasks. In both subtask 1
and subtask 2, we utilize accuracy as the metric to
evaluate our model performance.

Hyper Parameters All of our codes are written
based on PyTorch2. To extract the word definition
of candidate answers, we use NLTK toolkit (Bird
et al., 2009). The transformer encoder we used
is pretrained ALBERT-xxlarge-v2 model3. Since
the code of DUMA is not open-source, we reim-
plement it by only using one co-attention layer
where the attention heads are 64 and the dimen-
sion of Query, Key and Value are all 64, because
it is pointed that more co-attention layers do not
improve the performance (Zhu et al., 2020). The
setting is also applied to our WN-DUMA for fair
comparison.

Due to limited resources, the maximum se-
quence length of input tokens is set to 150 for both
subtask 1 and subtask 2. In fact, we found that
sequence length longer than 150 can only slightly
improve the model performance. We choose mini-
batch size equal to 2, and the AdamW optimizer

2https://pytorch.org/
3https://github.com/huggingface/

transformers

https://pytorch.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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(Loshchilov and Hutter, 2018) with an initial learn-
ing rate of 5e-06. We use some strategies for more
stable training: 1) clip the gradient norm to 10;
2) adopt a linear scheduler with warm up of the
first 10% training steps. To avoid overfitting, we
apply 0.1 dropout (Srivastava et al., 2014) rate to
the co-attention layer. We trained all the models
for 3 epochs, evaluate on the dev set at every 200
training steps and save the model with the best dev
accuracy. For each single model, we run experi-
ments for 5 times with different random seeds and
use the average as the ultimate performance.

4 Results

4.1 Quantitative Analysis

Table 2 summarizes the experimental results. The
first three models only have encoder (without en-
hancement of WordNet) and classifier part. It is
clearly seen that ALBERT is much more efficient
as encoder for abstract meaning understanding. It
is worth noting that by only using the question and
answer as input, the ALBERT model can also get
pretty good results, as table 2 shows. Intuitively,
it may be because the model could utilize syntax
and semantics of the question sentence to choose
the correct answer without looking through the pas-
sage.

Compared to ALBERTxxlarge, adding DUMA
layer obtains around 0.2% improvement in subtask
1, and more than 3% improvement in subtask 2.
Besides, our WN-DUMA single model achieves
further improvements based on DUMA on both
subtasks, +0.83% and +1.3% respectively, with-
out increasing the number of parameters. Using
a majority vote scheme, we ensemble our WN-
DUMA model with different parameters for more
stable predictions. Eventually, our ensemble mod-
els which get 87.57% on subtask 1 dev set and
90.01% on subtask 2 dev set acquire the best per-
formance on test sets (86.67% and 89.99%, respec-
tively) among our submissions.

Figure 3 and Figure 4 illustrate the dev accu-
racy of different models on subtask 1 and subtask
2 as the number of training steps increases. It is
interesting to observe that models with co-attention
layer (DUMA and WN-DUMA) could get over
70% accuracy with only 10% of training examples.
While ALBERT model has to be trained with the
full dataset to get relatively high accuracy. Con-
sequently, our WN-DUMA model may be useful
when there only exists a small amount of training

Figure 3: Subtask 1 dev accuracy over number of train-
ing steps.

Figure 4: Subtask 2 dev accuracy over number of train-
ing steps.

data.

4.2 Error Analysis

In order to further improve our model performance
in the future, we analyze some incorrect predictions
made by WN-DUMA, and classify them into two
categories:

• Candidate answers with similar meanings. In
some failure cases, the similarities between
candidate answers are too high to distinguish.
For example, outstanding and extraordinary,
challenge and attempt, etc.

• Lack of commonsense and relying too much
on the information of the passage. Due to
the fact that the question is the summary of
the passage, the machine need to choose the
most appropriate answer from a global per-
spective with some commonsense. However,
our model make decisions by only capturing
the local information in some cases. A spe-
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Model Task 1 dev Task 1 test Task 2 dev Task 2 test
BERTlarge (Devlin et al., 2019) 67.74 - 69.45 -
RoBERTalarge (Liu et al., 2019) 74.31 - 74.50 -
ALBERTxxlarge (Lan et al., 2020) 84.83 - 82.84 -

ALBERTxxlarge + DUMA (Zhu et al., 2020) 85.07 - 86.13 -
ALBERTxxlarge (question only) 79.57 - 82.14 -

ALBERTxxlarge + WN-DUMA (single) 85.90 84.54 87.43 86.61
ALBERTxxlarge + WN-DUMA (ensemble) 87.57 86.67 90.01 89.99

Table 2: Model comparison on subtask 1 and subtask 2 dataset.

Figure 5: An failure example made by WN-DUMA.
The ground true is the answer with a correct mark at
the bottom. While the prediction is the answer with
”predicted” at its bottom.

cific example can be seen in Figure 5. We can
see that the model predicts that the answer is
”troubled”, most likely because the passage
mentions ”the school was trapped into finan-
cial difficulties”.

5 Conclusion

In this paper, we describe our submitted system in
SemEval 2021 Task 4 ReCAM. Unlike previous
MRC datasets, ReCAM focus more on machine’s
ability in understanding and representing abstract
concepts. In order to provide more knowledge
of abstract word, we extract WordNet definitions
for each candidate answer based on part-of-speech
tags. In addition, our proposed WN-DUMA model
consists of a PrLM as the encoder and a dual multi-
head co-attention layer to enhance the relationship

between passage and question-answer pairs as hu-
man’s re-considering process. Our WN-DUMA
model improves the performance of our baseline
model DUMA on these datasets.

There are some limitations in our experiments.
Firstly, training data size of this task is limited
compared to other MRC tasks, with less than 3400
training pairs in both subtasks. This is understand-
able as collecting labeled data in many natural lan-
guage processing tasks is expensive. Secondly,
using ALBERTxxlarge PrLM, we only set 150 as
the maximum text length in our experiments due
to device limitation. Important sentences in the
passage that are highly relevant to the summary
are sometimes not covered. For PrLMs, their per-
formance always improve as the number of their
parameters increase. The use of large pre-trained
models sometimes requires the sacrifice of context.
For our future work, we plan to explore ways to
train models more efficiently with limited amount
of labeled data, and to design more cost-effective
models to deal with long input texts.
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