@inproceedings{luu-nguyen-2021-uit,
title = "{UIT}-{ISE}-{NLP} at {S}em{E}val-2021 Task 5: Toxic Spans Detection with {B}i{LSTM}-{CRF} and {T}oxic{BERT} Comment Classification",
author = "Luu, Son T. and
Nguyen, Ngan",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.113",
doi = "10.18653/v1/2021.semeval-1.113",
pages = "846--851",
abstract = "We present our works on SemEval-2021 Task 5 about Toxic Spans Detection. This task aims to build a model for identifying toxic words in whole posts. We use the BiLSTM-CRF model combining with ToxicBERT Classification to train the detection model for identifying toxic words in posts. Our model achieves 62.23{\%} by F1-score on the Toxic Spans Detection task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luu-nguyen-2021-uit">
<titleInfo>
<title>UIT-ISE-NLP at SemEval-2021 Task 5: Toxic Spans Detection with BiLSTM-CRF and ToxicBERT Comment Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Son</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Luu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngan</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present our works on SemEval-2021 Task 5 about Toxic Spans Detection. This task aims to build a model for identifying toxic words in whole posts. We use the BiLSTM-CRF model combining with ToxicBERT Classification to train the detection model for identifying toxic words in posts. Our model achieves 62.23% by F1-score on the Toxic Spans Detection task.</abstract>
<identifier type="citekey">luu-nguyen-2021-uit</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.113</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.113</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>846</start>
<end>851</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UIT-ISE-NLP at SemEval-2021 Task 5: Toxic Spans Detection with BiLSTM-CRF and ToxicBERT Comment Classification
%A Luu, Son T.
%A Nguyen, Ngan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F luu-nguyen-2021-uit
%X We present our works on SemEval-2021 Task 5 about Toxic Spans Detection. This task aims to build a model for identifying toxic words in whole posts. We use the BiLSTM-CRF model combining with ToxicBERT Classification to train the detection model for identifying toxic words in posts. Our model achieves 62.23% by F1-score on the Toxic Spans Detection task.
%R 10.18653/v1/2021.semeval-1.113
%U https://aclanthology.org/2021.semeval-1.113
%U https://doi.org/10.18653/v1/2021.semeval-1.113
%P 846-851
Markdown (Informal)
[UIT-ISE-NLP at SemEval-2021 Task 5: Toxic Spans Detection with BiLSTM-CRF and ToxicBERT Comment Classification](https://aclanthology.org/2021.semeval-1.113) (Luu & Nguyen, SemEval 2021)
ACL