@inproceedings{plucinski-klimczak-2021-ghost,
title = "{GHOST} at {S}em{E}val-2021 Task 5: Is explanation all you need?",
author = "Pluci{\'n}ski, Kamil and
Klimczak, Hanna",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.114",
doi = "10.18653/v1/2021.semeval-1.114",
pages = "852--859",
abstract = "This paper discusses different approaches to the Toxic Spans Detection task. The problem posed by the task was to determine which words contribute mostly to recognising a document as toxic. As opposed to binary classification of entire texts, word-level assessment could be of great use during comment moderation, also allowing for a more in-depth comprehension of the model{'}s predictions. As the main goal was to ensure transparency and understanding, this paper focuses on the current state-of-the-art approaches based on the explainable AI concepts and compares them to a supervised learning solution with word-level labels. The work consists of two xAI approaches that automatically provide the explanation for models trained for binary classification of toxic documents: an LSTM model with attention as a model-specific approach and the Shapley values for interpreting BERT predictions as a model-agnostic method. The competing approach considers this problem as supervised token classification, where models like BERT and its modifications were tested. The paper aims to explore, compare and assess the quality of predictions for different methods on the task. The advantages of each approach and further research direction are also discussed.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="plucinski-klimczak-2021-ghost">
<titleInfo>
<title>GHOST at SemEval-2021 Task 5: Is explanation all you need?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kamil</namePart>
<namePart type="family">Pluciński</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanna</namePart>
<namePart type="family">Klimczak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper discusses different approaches to the Toxic Spans Detection task. The problem posed by the task was to determine which words contribute mostly to recognising a document as toxic. As opposed to binary classification of entire texts, word-level assessment could be of great use during comment moderation, also allowing for a more in-depth comprehension of the model’s predictions. As the main goal was to ensure transparency and understanding, this paper focuses on the current state-of-the-art approaches based on the explainable AI concepts and compares them to a supervised learning solution with word-level labels. The work consists of two xAI approaches that automatically provide the explanation for models trained for binary classification of toxic documents: an LSTM model with attention as a model-specific approach and the Shapley values for interpreting BERT predictions as a model-agnostic method. The competing approach considers this problem as supervised token classification, where models like BERT and its modifications were tested. The paper aims to explore, compare and assess the quality of predictions for different methods on the task. The advantages of each approach and further research direction are also discussed.</abstract>
<identifier type="citekey">plucinski-klimczak-2021-ghost</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.114</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.114</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>852</start>
<end>859</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GHOST at SemEval-2021 Task 5: Is explanation all you need?
%A Pluciński, Kamil
%A Klimczak, Hanna
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F plucinski-klimczak-2021-ghost
%X This paper discusses different approaches to the Toxic Spans Detection task. The problem posed by the task was to determine which words contribute mostly to recognising a document as toxic. As opposed to binary classification of entire texts, word-level assessment could be of great use during comment moderation, also allowing for a more in-depth comprehension of the model’s predictions. As the main goal was to ensure transparency and understanding, this paper focuses on the current state-of-the-art approaches based on the explainable AI concepts and compares them to a supervised learning solution with word-level labels. The work consists of two xAI approaches that automatically provide the explanation for models trained for binary classification of toxic documents: an LSTM model with attention as a model-specific approach and the Shapley values for interpreting BERT predictions as a model-agnostic method. The competing approach considers this problem as supervised token classification, where models like BERT and its modifications were tested. The paper aims to explore, compare and assess the quality of predictions for different methods on the task. The advantages of each approach and further research direction are also discussed.
%R 10.18653/v1/2021.semeval-1.114
%U https://aclanthology.org/2021.semeval-1.114
%U https://doi.org/10.18653/v1/2021.semeval-1.114
%P 852-859
Markdown (Informal)
[GHOST at SemEval-2021 Task 5: Is explanation all you need?](https://aclanthology.org/2021.semeval-1.114) (Pluciński & Klimczak, SemEval 2021)
ACL