@inproceedings{hossain-etal-2021-csecu,
title = "{CSECU}-{DSG} at {S}em{E}val-2021 Task 5: Leveraging Ensemble of Sequence Tagging Models for Toxic Spans Detection",
author = "Hossain, Tashin and
Naim, Jannatun and
Tasneem, Fareen and
Tasnia, Radiathun and
Chy, Abu Nowshed",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.135",
doi = "10.18653/v1/2021.semeval-1.135",
pages = "990--994",
abstract = "The upsurge of prolific blogging and microblogging platforms enabled the abusers to spread negativity and threats greater than ever. Detecting the toxic portions substantially aids to moderate or exclude the abusive parts for maintaining sound online platforms. This paper describes our participation in the SemEval 2021 toxic span detection task. The task requires detecting spans that convey toxic remarks from the given text. We explore an ensemble of sequence labeling models including the BiLSTM-CRF, spaCy NER model with custom toxic tags, and fine-tuned BERT model to identify the toxic spans. Finally, a majority voting ensemble method is used to determine the unified toxic spans. Experimental results depict the competitive performance of our model among the participants.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hossain-etal-2021-csecu">
<titleInfo>
<title>CSECU-DSG at SemEval-2021 Task 5: Leveraging Ensemble of Sequence Tagging Models for Toxic Spans Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tashin</namePart>
<namePart type="family">Hossain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jannatun</namePart>
<namePart type="family">Naim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fareen</namePart>
<namePart type="family">Tasneem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radiathun</namePart>
<namePart type="family">Tasnia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abu</namePart>
<namePart type="given">Nowshed</namePart>
<namePart type="family">Chy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The upsurge of prolific blogging and microblogging platforms enabled the abusers to spread negativity and threats greater than ever. Detecting the toxic portions substantially aids to moderate or exclude the abusive parts for maintaining sound online platforms. This paper describes our participation in the SemEval 2021 toxic span detection task. The task requires detecting spans that convey toxic remarks from the given text. We explore an ensemble of sequence labeling models including the BiLSTM-CRF, spaCy NER model with custom toxic tags, and fine-tuned BERT model to identify the toxic spans. Finally, a majority voting ensemble method is used to determine the unified toxic spans. Experimental results depict the competitive performance of our model among the participants.</abstract>
<identifier type="citekey">hossain-etal-2021-csecu</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.135</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.135</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>990</start>
<end>994</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CSECU-DSG at SemEval-2021 Task 5: Leveraging Ensemble of Sequence Tagging Models for Toxic Spans Detection
%A Hossain, Tashin
%A Naim, Jannatun
%A Tasneem, Fareen
%A Tasnia, Radiathun
%A Chy, Abu Nowshed
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F hossain-etal-2021-csecu
%X The upsurge of prolific blogging and microblogging platforms enabled the abusers to spread negativity and threats greater than ever. Detecting the toxic portions substantially aids to moderate or exclude the abusive parts for maintaining sound online platforms. This paper describes our participation in the SemEval 2021 toxic span detection task. The task requires detecting spans that convey toxic remarks from the given text. We explore an ensemble of sequence labeling models including the BiLSTM-CRF, spaCy NER model with custom toxic tags, and fine-tuned BERT model to identify the toxic spans. Finally, a majority voting ensemble method is used to determine the unified toxic spans. Experimental results depict the competitive performance of our model among the participants.
%R 10.18653/v1/2021.semeval-1.135
%U https://aclanthology.org/2021.semeval-1.135
%U https://doi.org/10.18653/v1/2021.semeval-1.135
%P 990-994
Markdown (Informal)
[CSECU-DSG at SemEval-2021 Task 5: Leveraging Ensemble of Sequence Tagging Models for Toxic Spans Detection](https://aclanthology.org/2021.semeval-1.135) (Hossain et al., SemEval 2021)
ACL