@inproceedings{chi-chi-2021-redwoodnlp,
title = "{R}edwood{NLP} at {S}em{E}val-2021 Task 7: Ensembled Pretrained and Lightweight Models for Humor Detection",
author = "Chi, Nathan and
Chi, Ryan",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.171",
doi = "10.18653/v1/2021.semeval-1.171",
pages = "1209--1214",
abstract = "An understanding of humor is an essential component of human-facing NLP systems. In this paper, we investigate several methods for detecting humor in short statements as part of Semeval-2021 Shared Task 7. For Task 1a, we apply an ensemble of fine-tuned pre-trained language models; for Tasks 1b, 1c, and 2a, we investigate various tree-based and linear machine learning models. Our final system achieves an F1-score of 0.9571 (ranked 24 / 58) on Task 1a, an RMSE of 0.5580 (ranked 18 / 50) on Task 1b, an F1-score of 0.5024 (ranked 26 / 36) on Task 1c, and an RMSE of 0.7229 (ranked 45 / 48) on Task 2a.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chi-chi-2021-redwoodnlp">
<titleInfo>
<title>RedwoodNLP at SemEval-2021 Task 7: Ensembled Pretrained and Lightweight Models for Humor Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Chi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Chi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>An understanding of humor is an essential component of human-facing NLP systems. In this paper, we investigate several methods for detecting humor in short statements as part of Semeval-2021 Shared Task 7. For Task 1a, we apply an ensemble of fine-tuned pre-trained language models; for Tasks 1b, 1c, and 2a, we investigate various tree-based and linear machine learning models. Our final system achieves an F1-score of 0.9571 (ranked 24 / 58) on Task 1a, an RMSE of 0.5580 (ranked 18 / 50) on Task 1b, an F1-score of 0.5024 (ranked 26 / 36) on Task 1c, and an RMSE of 0.7229 (ranked 45 / 48) on Task 2a.</abstract>
<identifier type="citekey">chi-chi-2021-redwoodnlp</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.171</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.171</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1209</start>
<end>1214</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RedwoodNLP at SemEval-2021 Task 7: Ensembled Pretrained and Lightweight Models for Humor Detection
%A Chi, Nathan
%A Chi, Ryan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F chi-chi-2021-redwoodnlp
%X An understanding of humor is an essential component of human-facing NLP systems. In this paper, we investigate several methods for detecting humor in short statements as part of Semeval-2021 Shared Task 7. For Task 1a, we apply an ensemble of fine-tuned pre-trained language models; for Tasks 1b, 1c, and 2a, we investigate various tree-based and linear machine learning models. Our final system achieves an F1-score of 0.9571 (ranked 24 / 58) on Task 1a, an RMSE of 0.5580 (ranked 18 / 50) on Task 1b, an F1-score of 0.5024 (ranked 26 / 36) on Task 1c, and an RMSE of 0.7229 (ranked 45 / 48) on Task 2a.
%R 10.18653/v1/2021.semeval-1.171
%U https://aclanthology.org/2021.semeval-1.171
%U https://doi.org/10.18653/v1/2021.semeval-1.171
%P 1209-1214
Markdown (Informal)
[RedwoodNLP at SemEval-2021 Task 7: Ensembled Pretrained and Lightweight Models for Humor Detection](https://aclanthology.org/2021.semeval-1.171) (Chi & Chi, SemEval 2021)
ACL