@inproceedings{samson-gifu-2021-fii,
title = "{FII} {FUNNY} at {S}em{E}val-2021 Task 7: {H}a{H}ackathon: Detecting and rating Humor and Offense",
author = "Samson, Mihai and
Gifu, Daniela",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.174",
doi = "10.18653/v1/2021.semeval-1.174",
pages = "1226--1231",
abstract = "The {``}HaHackathon: Detecting and Rating Humor and Offense{''} task at the SemEval 2021 competition focuses on detecting and rating the humor level in sentences, as well as the level of offensiveness contained in these texts with humoristic tones. In this paper, we present an approach based on recent Deep Learning techniques by both trying to train the models based on the dataset solely and by trying to fine-tune pre-trained models on the gigantic corpus.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="samson-gifu-2021-fii">
<titleInfo>
<title>FII FUNNY at SemEval-2021 Task 7: HaHackathon: Detecting and rating Humor and Offense</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Samson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniela</namePart>
<namePart type="family">Gifu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The “HaHackathon: Detecting and Rating Humor and Offense” task at the SemEval 2021 competition focuses on detecting and rating the humor level in sentences, as well as the level of offensiveness contained in these texts with humoristic tones. In this paper, we present an approach based on recent Deep Learning techniques by both trying to train the models based on the dataset solely and by trying to fine-tune pre-trained models on the gigantic corpus.</abstract>
<identifier type="citekey">samson-gifu-2021-fii</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.174</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.174</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1226</start>
<end>1231</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FII FUNNY at SemEval-2021 Task 7: HaHackathon: Detecting and rating Humor and Offense
%A Samson, Mihai
%A Gifu, Daniela
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F samson-gifu-2021-fii
%X The “HaHackathon: Detecting and Rating Humor and Offense” task at the SemEval 2021 competition focuses on detecting and rating the humor level in sentences, as well as the level of offensiveness contained in these texts with humoristic tones. In this paper, we present an approach based on recent Deep Learning techniques by both trying to train the models based on the dataset solely and by trying to fine-tune pre-trained models on the gigantic corpus.
%R 10.18653/v1/2021.semeval-1.174
%U https://aclanthology.org/2021.semeval-1.174
%U https://doi.org/10.18653/v1/2021.semeval-1.174
%P 1226-1231
Markdown (Informal)
[FII FUNNY at SemEval-2021 Task 7: HaHackathon: Detecting and rating Humor and Offense](https://aclanthology.org/2021.semeval-1.174) (Samson & Gifu, SemEval 2021)
ACL