@inproceedings{xie-etal-2021-iie,
title = "{IIE}-{NLP}-Eyas at {S}em{E}val-2021 Task 4: Enhancing {PLM} for {R}e{CAM} with Special Tokens, Re-Ranking, {S}iamese Encoders and Back Translation",
author = "Xie, Yuqiang and
Xing, Luxi and
Peng, Wei and
Hu, Yue",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.22",
doi = "10.18653/v1/2021.semeval-1.22",
pages = "199--204",
abstract = "This paper introduces our systems for all three subtasks of SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To help our model better represent and understand abstract concepts in natural language, we well-design many simple and effective approaches adapted to the backbone model (RoBERTa). Specifically, we formalize the subtasks into the multiple-choice question answering format and add special tokens to abstract concepts, then, the final prediction of QA is considered as the result of subtasks. Additionally, we employ many finetuning tricks to improve the performance. Experimental results show that our approach gains significant performance compared with the baseline systems. Our system achieves eighth rank (87.51{\%}) and tenth rank (89.64{\%}) on the official blind test set of subtask 1 and subtask 2 respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xie-etal-2021-iie">
<titleInfo>
<title>IIE-NLP-Eyas at SemEval-2021 Task 4: Enhancing PLM for ReCAM with Special Tokens, Re-Ranking, Siamese Encoders and Back Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuqiang</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luxi</namePart>
<namePart type="family">Xing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces our systems for all three subtasks of SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To help our model better represent and understand abstract concepts in natural language, we well-design many simple and effective approaches adapted to the backbone model (RoBERTa). Specifically, we formalize the subtasks into the multiple-choice question answering format and add special tokens to abstract concepts, then, the final prediction of QA is considered as the result of subtasks. Additionally, we employ many finetuning tricks to improve the performance. Experimental results show that our approach gains significant performance compared with the baseline systems. Our system achieves eighth rank (87.51%) and tenth rank (89.64%) on the official blind test set of subtask 1 and subtask 2 respectively.</abstract>
<identifier type="citekey">xie-etal-2021-iie</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.22</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.22</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>199</start>
<end>204</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IIE-NLP-Eyas at SemEval-2021 Task 4: Enhancing PLM for ReCAM with Special Tokens, Re-Ranking, Siamese Encoders and Back Translation
%A Xie, Yuqiang
%A Xing, Luxi
%A Peng, Wei
%A Hu, Yue
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F xie-etal-2021-iie
%X This paper introduces our systems for all three subtasks of SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To help our model better represent and understand abstract concepts in natural language, we well-design many simple and effective approaches adapted to the backbone model (RoBERTa). Specifically, we formalize the subtasks into the multiple-choice question answering format and add special tokens to abstract concepts, then, the final prediction of QA is considered as the result of subtasks. Additionally, we employ many finetuning tricks to improve the performance. Experimental results show that our approach gains significant performance compared with the baseline systems. Our system achieves eighth rank (87.51%) and tenth rank (89.64%) on the official blind test set of subtask 1 and subtask 2 respectively.
%R 10.18653/v1/2021.semeval-1.22
%U https://aclanthology.org/2021.semeval-1.22
%U https://doi.org/10.18653/v1/2021.semeval-1.22
%P 199-204
Markdown (Informal)
[IIE-NLP-Eyas at SemEval-2021 Task 4: Enhancing PLM for ReCAM with Special Tokens, Re-Ranking, Siamese Encoders and Back Translation](https://aclanthology.org/2021.semeval-1.22) (Xie et al., SemEval 2021)
ACL