@inproceedings{karia-etal-2021-kgp,
title = "{KGP} at {S}em{E}val-2021 Task 8: Leveraging Multi-Staged Language Models for Extracting Measurements, their Attributes and Relations",
author = "Karia, Neel and
Kaushal, Ayush and
Mallick, Faraaz",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.46",
doi = "10.18653/v1/2021.semeval-1.46",
pages = "387--396",
abstract = "SemEval-2021 Task 8: MeasEval aims at improving the machine understanding of measurements in scientific texts through a set of entity and semantic relation extraction sub-tasks on identifying quantity spans along with various attributes and relationships. This paper describes our system, consisting of a three-stage pipeline, that leverages pre-trained language models to extract the quantity spans in the text, followed by intelligent templates to identify units and modifiers. Finally, it identifies the quantity attributes and their relations using language models boosted with a feature re-using hierarchical architecture and multi-task learning. Our submission significantly outperforms the baseline, with the best model from the post-evaluation phase delivering more than 100{\%} increase on F1 (Overall) from the baseline.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="karia-etal-2021-kgp">
<titleInfo>
<title>KGP at SemEval-2021 Task 8: Leveraging Multi-Staged Language Models for Extracting Measurements, their Attributes and Relations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Neel</namePart>
<namePart type="family">Karia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayush</namePart>
<namePart type="family">Kaushal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faraaz</namePart>
<namePart type="family">Mallick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>SemEval-2021 Task 8: MeasEval aims at improving the machine understanding of measurements in scientific texts through a set of entity and semantic relation extraction sub-tasks on identifying quantity spans along with various attributes and relationships. This paper describes our system, consisting of a three-stage pipeline, that leverages pre-trained language models to extract the quantity spans in the text, followed by intelligent templates to identify units and modifiers. Finally, it identifies the quantity attributes and their relations using language models boosted with a feature re-using hierarchical architecture and multi-task learning. Our submission significantly outperforms the baseline, with the best model from the post-evaluation phase delivering more than 100% increase on F1 (Overall) from the baseline.</abstract>
<identifier type="citekey">karia-etal-2021-kgp</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.46</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.46</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>387</start>
<end>396</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KGP at SemEval-2021 Task 8: Leveraging Multi-Staged Language Models for Extracting Measurements, their Attributes and Relations
%A Karia, Neel
%A Kaushal, Ayush
%A Mallick, Faraaz
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F karia-etal-2021-kgp
%X SemEval-2021 Task 8: MeasEval aims at improving the machine understanding of measurements in scientific texts through a set of entity and semantic relation extraction sub-tasks on identifying quantity spans along with various attributes and relationships. This paper describes our system, consisting of a three-stage pipeline, that leverages pre-trained language models to extract the quantity spans in the text, followed by intelligent templates to identify units and modifiers. Finally, it identifies the quantity attributes and their relations using language models boosted with a feature re-using hierarchical architecture and multi-task learning. Our submission significantly outperforms the baseline, with the best model from the post-evaluation phase delivering more than 100% increase on F1 (Overall) from the baseline.
%R 10.18653/v1/2021.semeval-1.46
%U https://aclanthology.org/2021.semeval-1.46
%U https://doi.org/10.18653/v1/2021.semeval-1.46
%P 387-396
Markdown (Informal)
[KGP at SemEval-2021 Task 8: Leveraging Multi-Staged Language Models for Extracting Measurements, their Attributes and Relations](https://aclanthology.org/2021.semeval-1.46) (Karia et al., SemEval 2021)
ACL