@inproceedings{vettigli-sorgente-2021-compna,
title = "{C}omp{NA} at {S}em{E}val-2021 Task 1: Prediction of lexical complexity analyzing heterogeneous features",
author = "Vettigli, Giuseppe and
Sorgente, Antonio",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.69",
doi = "10.18653/v1/2021.semeval-1.69",
pages = "560--564",
abstract = "This paper describes the CompNa model that has been submitted to the Lexical Complexity Prediction (LCP) shared task hosted at SemEval 2021 (Task 1). The solution is based on combining features of different nature through an ensambling method based on Decision Trees and trained using Gradient Boosting. We discuss the results of the model and highlight the features with more predictive capabilities.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vettigli-sorgente-2021-compna">
<titleInfo>
<title>CompNA at SemEval-2021 Task 1: Prediction of lexical complexity analyzing heterogeneous features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Vettigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Sorgente</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the CompNa model that has been submitted to the Lexical Complexity Prediction (LCP) shared task hosted at SemEval 2021 (Task 1). The solution is based on combining features of different nature through an ensambling method based on Decision Trees and trained using Gradient Boosting. We discuss the results of the model and highlight the features with more predictive capabilities.</abstract>
<identifier type="citekey">vettigli-sorgente-2021-compna</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.69</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.69</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>560</start>
<end>564</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CompNA at SemEval-2021 Task 1: Prediction of lexical complexity analyzing heterogeneous features
%A Vettigli, Giuseppe
%A Sorgente, Antonio
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F vettigli-sorgente-2021-compna
%X This paper describes the CompNa model that has been submitted to the Lexical Complexity Prediction (LCP) shared task hosted at SemEval 2021 (Task 1). The solution is based on combining features of different nature through an ensambling method based on Decision Trees and trained using Gradient Boosting. We discuss the results of the model and highlight the features with more predictive capabilities.
%R 10.18653/v1/2021.semeval-1.69
%U https://aclanthology.org/2021.semeval-1.69
%U https://doi.org/10.18653/v1/2021.semeval-1.69
%P 560-564
Markdown (Informal)
[CompNA at SemEval-2021 Task 1: Prediction of lexical complexity analyzing heterogeneous features](https://aclanthology.org/2021.semeval-1.69) (Vettigli & Sorgente, SemEval 2021)
ACL