@inproceedings{el-mamoun-etal-2021-cs,
title = "{CS}-{UM}6{P} at {S}em{E}val-2021 Task 1: A Deep Learning Model-based Pre-trained Transformer Encoder for Lexical Complexity",
author = "El Mamoun, Nabil and
El Mahdaouy, Abdelkader and
El Mekki, Abdellah and
Essefar, Kabil and
Berrada, Ismail",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.73",
doi = "10.18653/v1/2021.semeval-1.73",
pages = "585--589",
abstract = "Lexical Complexity Prediction (LCP) involves assigning a difficulty score to a particular word or expression, in a text intended for a target audience. In this paper, we introduce a new deep learning-based system for this challenging task. The proposed system consists of a deep learning model, based on pre-trained transformer encoder, for word and Multi-Word Expression (MWE) complexity prediction. First, on top of the encoder{'}s contextualized word embedding, our model employs an attention layer on the input context and the complex word or MWE. Then, the attention output is concatenated with the pooled output of the encoder and passed to a regression module. We investigate both single-task and joint training on both Sub-Tasks data using multiple pre-trained transformer-based encoders. The obtained results are very promising and show the effectiveness of fine-tuning pre-trained transformers for LCP task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="el-mamoun-etal-2021-cs">
<titleInfo>
<title>CS-UM6P at SemEval-2021 Task 1: A Deep Learning Model-based Pre-trained Transformer Encoder for Lexical Complexity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nabil</namePart>
<namePart type="family">El Mamoun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abdelkader</namePart>
<namePart type="family">El Mahdaouy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abdellah</namePart>
<namePart type="family">El Mekki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kabil</namePart>
<namePart type="family">Essefar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ismail</namePart>
<namePart type="family">Berrada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lexical Complexity Prediction (LCP) involves assigning a difficulty score to a particular word or expression, in a text intended for a target audience. In this paper, we introduce a new deep learning-based system for this challenging task. The proposed system consists of a deep learning model, based on pre-trained transformer encoder, for word and Multi-Word Expression (MWE) complexity prediction. First, on top of the encoder’s contextualized word embedding, our model employs an attention layer on the input context and the complex word or MWE. Then, the attention output is concatenated with the pooled output of the encoder and passed to a regression module. We investigate both single-task and joint training on both Sub-Tasks data using multiple pre-trained transformer-based encoders. The obtained results are very promising and show the effectiveness of fine-tuning pre-trained transformers for LCP task.</abstract>
<identifier type="citekey">el-mamoun-etal-2021-cs</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.73</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.73</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>585</start>
<end>589</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CS-UM6P at SemEval-2021 Task 1: A Deep Learning Model-based Pre-trained Transformer Encoder for Lexical Complexity
%A El Mamoun, Nabil
%A El Mahdaouy, Abdelkader
%A El Mekki, Abdellah
%A Essefar, Kabil
%A Berrada, Ismail
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F el-mamoun-etal-2021-cs
%X Lexical Complexity Prediction (LCP) involves assigning a difficulty score to a particular word or expression, in a text intended for a target audience. In this paper, we introduce a new deep learning-based system for this challenging task. The proposed system consists of a deep learning model, based on pre-trained transformer encoder, for word and Multi-Word Expression (MWE) complexity prediction. First, on top of the encoder’s contextualized word embedding, our model employs an attention layer on the input context and the complex word or MWE. Then, the attention output is concatenated with the pooled output of the encoder and passed to a regression module. We investigate both single-task and joint training on both Sub-Tasks data using multiple pre-trained transformer-based encoders. The obtained results are very promising and show the effectiveness of fine-tuning pre-trained transformers for LCP task.
%R 10.18653/v1/2021.semeval-1.73
%U https://aclanthology.org/2021.semeval-1.73
%U https://doi.org/10.18653/v1/2021.semeval-1.73
%P 585-589
Markdown (Informal)
[CS-UM6P at SemEval-2021 Task 1: A Deep Learning Model-based Pre-trained Transformer Encoder for Lexical Complexity](https://aclanthology.org/2021.semeval-1.73) (El Mamoun et al., SemEval 2021)
ACL