@inproceedings{paetzold-2021-utfpr,
title = "{UTFPR} at {S}em{E}val-2021 Task 1: Complexity Prediction by Combining {BERT} Vectors and Classic Features",
author = "Paetzold, Gustavo Henrique",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.78",
doi = "10.18653/v1/2021.semeval-1.78",
pages = "617--622",
abstract = "We describe the UTFPR systems submitted to the Lexical Complexity Prediction shared task of SemEval 2021. They perform complexity prediction by combining classic features, such as word frequency, n-gram frequency, word length, and number of senses, with BERT vectors. We test numerous feature combinations and machine learning models in our experiments and find that BERT vectors, even if not optimized for the task at hand, are a great complement to classic features. We also find that employing the principle of compositionality can potentially help in phrase complexity prediction. Our systems place 45th out of 55 for single words and 29th out of 38 for phrases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paetzold-2021-utfpr">
<titleInfo>
<title>UTFPR at SemEval-2021 Task 1: Complexity Prediction by Combining BERT Vectors and Classic Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gustavo</namePart>
<namePart type="given">Henrique</namePart>
<namePart type="family">Paetzold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe the UTFPR systems submitted to the Lexical Complexity Prediction shared task of SemEval 2021. They perform complexity prediction by combining classic features, such as word frequency, n-gram frequency, word length, and number of senses, with BERT vectors. We test numerous feature combinations and machine learning models in our experiments and find that BERT vectors, even if not optimized for the task at hand, are a great complement to classic features. We also find that employing the principle of compositionality can potentially help in phrase complexity prediction. Our systems place 45th out of 55 for single words and 29th out of 38 for phrases.</abstract>
<identifier type="citekey">paetzold-2021-utfpr</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.78</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.78</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>617</start>
<end>622</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UTFPR at SemEval-2021 Task 1: Complexity Prediction by Combining BERT Vectors and Classic Features
%A Paetzold, Gustavo Henrique
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F paetzold-2021-utfpr
%X We describe the UTFPR systems submitted to the Lexical Complexity Prediction shared task of SemEval 2021. They perform complexity prediction by combining classic features, such as word frequency, n-gram frequency, word length, and number of senses, with BERT vectors. We test numerous feature combinations and machine learning models in our experiments and find that BERT vectors, even if not optimized for the task at hand, are a great complement to classic features. We also find that employing the principle of compositionality can potentially help in phrase complexity prediction. Our systems place 45th out of 55 for single words and 29th out of 38 for phrases.
%R 10.18653/v1/2021.semeval-1.78
%U https://aclanthology.org/2021.semeval-1.78
%U https://doi.org/10.18653/v1/2021.semeval-1.78
%P 617-622
Markdown (Informal)
[UTFPR at SemEval-2021 Task 1: Complexity Prediction by Combining BERT Vectors and Classic Features](https://aclanthology.org/2021.semeval-1.78) (Paetzold, SemEval 2021)
ACL