@inproceedings{ranjbar-zeinali-2021-lotus,
title = "Lotus at {S}em{E}val-2021 Task 2: Combination of {BERT} and Paraphrasing for {E}nglish Word Sense Disambiguation",
author = "Ranjbar, Niloofar and
Zeinali, Hossein",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.95",
doi = "10.18653/v1/2021.semeval-1.95",
pages = "724--729",
abstract = "In this paper, we describe our proposed methods for the multilingual word-in-Context disambiguation task in SemEval-2021. In this task, systems should determine whether a word that occurs in two different sentences is used with the same meaning or not. We proposed several methods using a pre-trained BERT model. In two of them, we paraphrased sentences and add them as input to the BERT, and in one of them, we used WordNet to add some extra lexical information. We evaluated our proposed methods on test data in SemEval- 2021 task 2.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ranjbar-zeinali-2021-lotus">
<titleInfo>
<title>Lotus at SemEval-2021 Task 2: Combination of BERT and Paraphrasing for English Word Sense Disambiguation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Niloofar</namePart>
<namePart type="family">Ranjbar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hossein</namePart>
<namePart type="family">Zeinali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe our proposed methods for the multilingual word-in-Context disambiguation task in SemEval-2021. In this task, systems should determine whether a word that occurs in two different sentences is used with the same meaning or not. We proposed several methods using a pre-trained BERT model. In two of them, we paraphrased sentences and add them as input to the BERT, and in one of them, we used WordNet to add some extra lexical information. We evaluated our proposed methods on test data in SemEval- 2021 task 2.</abstract>
<identifier type="citekey">ranjbar-zeinali-2021-lotus</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.95</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.95</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>724</start>
<end>729</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lotus at SemEval-2021 Task 2: Combination of BERT and Paraphrasing for English Word Sense Disambiguation
%A Ranjbar, Niloofar
%A Zeinali, Hossein
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F ranjbar-zeinali-2021-lotus
%X In this paper, we describe our proposed methods for the multilingual word-in-Context disambiguation task in SemEval-2021. In this task, systems should determine whether a word that occurs in two different sentences is used with the same meaning or not. We proposed several methods using a pre-trained BERT model. In two of them, we paraphrased sentences and add them as input to the BERT, and in one of them, we used WordNet to add some extra lexical information. We evaluated our proposed methods on test data in SemEval- 2021 task 2.
%R 10.18653/v1/2021.semeval-1.95
%U https://aclanthology.org/2021.semeval-1.95
%U https://doi.org/10.18653/v1/2021.semeval-1.95
%P 724-729
Markdown (Informal)
[Lotus at SemEval-2021 Task 2: Combination of BERT and Paraphrasing for English Word Sense Disambiguation](https://aclanthology.org/2021.semeval-1.95) (Ranjbar & Zeinali, SemEval 2021)
ACL