@inproceedings{shen-baldwin-2021-simple,
title = "A Simple yet Effective Method for Sentence Ordering",
author = "Shen, Aili and
Baldwin, Timothy",
editor = "Li, Haizhou and
Levow, Gina-Anne and
Yu, Zhou and
Gupta, Chitralekha and
Sisman, Berrak and
Cai, Siqi and
Vandyke, David and
Dethlefs, Nina and
Wu, Yan and
Li, Junyi Jessy",
booktitle = "Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = jul,
year = "2021",
address = "Singapore and Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.sigdial-1.16",
doi = "10.18653/v1/2021.sigdial-1.16",
pages = "154--160",
abstract = "Sentence ordering is the task of arranging a given bag of sentences so as to maximise the coherence of the overall text. In this work, we propose a simple yet effective training method that improves the capacity of models to capture overall text coherence based on training over pairs of sentences/segments. Experimental results show the superiority of our proposed method in in- and cross-domain settings. The utility of our method is also verified over a multi-document summarisation task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shen-baldwin-2021-simple">
<titleInfo>
<title>A Simple yet Effective Method for Sentence Ordering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aili</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haizhou</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gina-Anne</namePart>
<namePart type="family">Levow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhou</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chitralekha</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Berrak</namePart>
<namePart type="family">Sisman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siqi</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Vandyke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Dethlefs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore and Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentence ordering is the task of arranging a given bag of sentences so as to maximise the coherence of the overall text. In this work, we propose a simple yet effective training method that improves the capacity of models to capture overall text coherence based on training over pairs of sentences/segments. Experimental results show the superiority of our proposed method in in- and cross-domain settings. The utility of our method is also verified over a multi-document summarisation task.</abstract>
<identifier type="citekey">shen-baldwin-2021-simple</identifier>
<identifier type="doi">10.18653/v1/2021.sigdial-1.16</identifier>
<location>
<url>https://aclanthology.org/2021.sigdial-1.16</url>
</location>
<part>
<date>2021-07</date>
<extent unit="page">
<start>154</start>
<end>160</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Simple yet Effective Method for Sentence Ordering
%A Shen, Aili
%A Baldwin, Timothy
%Y Li, Haizhou
%Y Levow, Gina-Anne
%Y Yu, Zhou
%Y Gupta, Chitralekha
%Y Sisman, Berrak
%Y Cai, Siqi
%Y Vandyke, David
%Y Dethlefs, Nina
%Y Wu, Yan
%Y Li, Junyi Jessy
%S Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2021
%8 July
%I Association for Computational Linguistics
%C Singapore and Online
%F shen-baldwin-2021-simple
%X Sentence ordering is the task of arranging a given bag of sentences so as to maximise the coherence of the overall text. In this work, we propose a simple yet effective training method that improves the capacity of models to capture overall text coherence based on training over pairs of sentences/segments. Experimental results show the superiority of our proposed method in in- and cross-domain settings. The utility of our method is also verified over a multi-document summarisation task.
%R 10.18653/v1/2021.sigdial-1.16
%U https://aclanthology.org/2021.sigdial-1.16
%U https://doi.org/10.18653/v1/2021.sigdial-1.16
%P 154-160
Markdown (Informal)
[A Simple yet Effective Method for Sentence Ordering](https://aclanthology.org/2021.sigdial-1.16) (Shen & Baldwin, SIGDIAL 2021)
ACL
- Aili Shen and Timothy Baldwin. 2021. A Simple yet Effective Method for Sentence Ordering. In Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 154–160, Singapore and Online. Association for Computational Linguistics.