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Abstract

Alzheimer’s Disease (AD) is associated with
many characteristic changes, not only in an
individual’s language, but also in the interac-
tive patterns observed in dialogue. The most
indicative changes of this latter kind tend to
be associated with relatively rare dialogue acts
(DAs), such as those involved in clarification
exchanges and responses to particular kinds of
questions. However, most existing work in DA
tagging focuses on improving average perfor-
mance, effectively prioritizing more frequent
classes; it thus gives poor performance on
these rarer classes and is not suited for applica-
tion to AD analysis. In this paper, we investi-
gate tagging specifically for rare class DAs, us-
ing a hierarchical BiLSTM model with various
ways of incorporating information from previ-
ous utterances and DA tags in context. We
show that this can give good performance for
rare DA classes on both the general Switch-
board corpus (SwDA) and an AD-specific con-
versational dataset, the Carolinas Conversation
Collection (CCC); and that the tagger outputs
then contribute useful information for distin-
guishing patients with and without AD.

1 Introduction

Natural Language Processing (NLP) has been ap-
plied to clinical health data for many purposes,
including summarizing clinical notes, extracting
specific elements from an unstructured medical
record, and question-answer systems to interact
with patients (Zahid et al., 2018; Velupillai et al.,
2018; Demner-Fushman et al., 2009). Within this,
one recent focus is on the use of NLP to diagnose
the presence or extent of neurodegenerative cog-
nitive impairment and/or monitor changes, based
on patients’ speech and language (see e.g. Roark
et al., 2011), with much of this work focussing on
dementia, primarily Alzheimer’s Disease (AD) (see
e.g. Orimaye et al., 2017). Most such approaches

are based on features of the speaker’s (or writer’s)
individual language, e.g. the complexity of vocab-
ulary or syntax (see e.g. Fraser et al., 2016, for a
comparison of a range of such features).

However, conditions such as AD also affect com-
munication in interaction: AD patients display
more conversational problems, often use terms
that signal misunderstanding, and produce more
requests for repair; while their conversational part-
ners produce more elaboration or clarification (see
e.g. Elsey et al., 2015). Closed (yes/no) questions
are also asked more frequently of AD patients than
open-ended wh-questions (Hamilton, 2005), and
patients’ ability to respond can vary with question
type (Varela Suárez, 2018). Differences in dialogue
act (DA) profiles might therefore add useful infor-
mation for automatic diagnosis and monitoring of
AD, and might also generalise better across lan-
guages than more lexically- or syntactically-based
approaches: clarification and non-understanding
signals seem to be quite general across languages
and cultures (Dingemanse et al., 2015). However,
while some computational studies have used inter-
actional differences in AD diagnosis (see e.g. Luz
et al., 2018; Mirheidari et al., 2019), these use mod-
els which are not interpretable in these DA terms,
making it hard to provide useful output to clinical
researchers, clinicians or carers.

Here, we therefore apply an explicit DA tag-
ging approach to the problem, specifically looking
for DAs that are characteristic of dementia, e.g.
signals of non-understanding, requests for clarifi-
cation, and particular types of questions and an-
swers. Many of these are rare in natural dialogue,
though; the signal non-understanding DA, for ex-
ample, makes up only 0.1% of utterances in the
Switchboard Corpus (Jurafsky et al., 1997). Stan-
dard DA tagging approaches, trained on average
loss across all DA classes, therefore fail to give
good performance.
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The main contributions of this paper are as fol-
lows:

• The adaptation of a hierarchical Bi-LSTM
model to rare DA class tagging, modifying
loss function, and the inclusion of contextual
dependencies among DAs and utterances.

• Evaluation of the proposed method on two
benchmark datasets, SwDA and CCC, achiev-
ing good performance: accuracy 88% with
macro average F1 score 0.58 on SwDA, and
accuracy 66% with F1 score 0.45 on CCC.

• Demonstration that these DAs can help dis-
tinguish between AD patients and Non-AD
patients, achieving classification accuracy of
70% when used alone as unigram and bigram
DA sequences, and 80% when combined with
other interactional features.

2 Background

Interaction and AD diagnosis As explained
above, AD patients display a number of charac-
teristic interaction differences which can be charac-
terised in terms of dialogue acts (DAs), including
the rate of misunderstanding or non-understanding
signals, requests for repair, elaboration, and clarifi-
cation (Orange et al., 1996; Elsey et al., 2015), as
well as yes/no-questions, wh-questions and choice
questions and responses thereto (Hamilton, 2005;
Gottlieb-Tanaka et al., 2003; Small and Perry,
2005; Varela Suárez, 2018). However, these stud-
ies, often based on Conversation Analysis (CA),
give rich detail but are small-scale and/or qualita-
tive. Some more quantitative corpus-based work
makes similar observations: Nasreen et al. (2019)
examine DA distributions in the Carolinas Con-
versation Collection (CCC, Pope and Davis, 2011),
finding more signal-non-understanding, simple yes-
answers and clarification requests in cognitively
impaired patients’ conversations.

Computational work that leverages these fea-
tures is rare, however. Many diagnosis classifi-
cation models include some signals associated with
non-understanding (e.g. Fraser et al., 2016; Broder-
ick et al., 2018) but only as part of large general lan-
guage feature sets. One reason for this is that many
studies use data that contains little interaction: the
commonly used DementiaBank Pitt corpus, for ex-
ample, contains conversations of a very one-sided
nature. In a recent study, Farzana et al. (2020) de-
veloped an annotation scheme with 26 DAs based

on ISO standard (Bunt, 2011) on DementiaBank
data set to facilitate automated cognitive health
screening from conversational interviews. They in-
vestigated phenomena like clarification request but
some of the tags are specific to Cookie Theft Pic-
ture description task (Goodglass et al., 2001) and
are not very general. Some recent work uses a more
truly interactive approach: Luz et al. (2018) use
a probabilistic graphical model to classify AD pa-
tients in the CCC corpus, although they use pauses
and vocalisation times rather than any DA infor-
mation; Mirheidari et al. (2019) include interac-
tional features in a SVM classifier on Elsey et al.
(2015)’s dataset, showing good accuracy, but use
very specific features (e.g. “responding to neurolo-
gists’ questions about memory problems”) rather
than more general DA tags. In contrast, our goal
here is to investigate the use of general, well-known
(but rare) DA classes.

Dialogue act (DA) tagging DA tagging has been
approached using a range of machine learning
techniques, starting with early work using Hidden
Markov Models to capture the intuition that key
information lies in both the sequences of words
within utterances and the sequence of DAs across
utterances (Stolcke et al., 2000). Improvements
have been gained by using Conditional Random
Fields (Zimmermann, 2009), cue phrase models
(Webb et al., 2005), joint classification and segmen-
tation (Ang et al., 2005), and more recently neu-
ral networks including Recurrent Neural Networks
(RNNs) (Kalchbrenner and Blunsom, 2013; Ortega
and Vu, 2017) and Convolutional Neural Networks
(CNNs) (Lee and Dernoncourt, 2016). Most recent
work sticks with Stolcke et al. (2000)’s original
intuition to include contextual information (preced-
ing utterances and their DA roles help predict the
current utterance), often via hierarchical models
where the higher layers capture DA/utterance se-
quence information; see e.g. (Raheja and Tetreault,
2019)’s use of a CRF above dialogue-level and
utterance-level BiLSTMs, achieving state-of-the-
art accuracy of 82.9% on the standard SwDA cor-
pus. However, variants exist: Bothe et al. (2018),
for example, consider only a limited number of
preceding utterances as a context within a RNN,
rather than the full sequence, accuracy is reduced
to 77.34% on SwDA but their model, in using only
limited preceding context (rather than assuming
knowledge of future utterances) is suitable for in-
cremental online settings.
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Rare DA classes All these approaches, however,
train and evaluate their models assuming that the
goal is average performance over a general DA
tagset, usually the 42-tag SwDA DAMSL scheme
(Stolcke et al., 2000). Some use fewer classes —
Fuscone et al. (2020) use 3 dominating DA classes
statement, opinion, and backchannel; Ramacan-
dran (2013) use an 18-tag DAMSL subset; Sridhar
et al. (2009) group the 42 classes into 7 common
classes and one ‘other’ category based on frequency
— but all of these focus on the most common tags.
In contrast, we are interested in the rare classes
useful for dementia analysis, following the clinical
CA work described above; we give a full list of
these classes of interest in Section 4.1 (see Table 1).
Few studies give details of accuracy on these rarer
classes; but Raheja and Tetreault (2019), despite
achieving 82.9% accuracy overall, show accuracy
of only c.25% for br (signal-non-understanding,
which makes up only 0.1% of SwDA utterances),
c.30% for bˆm (repeat-phrase, 0.3% of utterances),
c.20% for qy (yes-no-question, 2%), and <5% for
both qw (wh-question, 1%) and b (backchannel, a
relatively common but important tag).

3 Proposed Approach

Here, then, our purpose is to improve DA tagging
accuracy for the specific DA classes of interest in
AD diagnosis, including specific types of questions,
answers and misunderstanding signals, most of
which are relatively rare. For this purpose, we use
a context-based hierarchical BiLSTM model with
attention, to capture relations at the word, utterance
and DA level and leverage utterance DA/context in-
formation. To maintain the ability to use our model
in an online setting, we use only utterances from the
preceding (left) context, not the following (right)
context. We perform DA tagging experiments on
two corpora, one general and one AD-specific, to
compare a range of models:

• A baseline model using the word embeddings
as text features, without any context informa-
tion;

• A hierarchical BiLSTM model using word
embeddings and previous utterance represen-
tations from context;

• A hierarchical BiLSTM model using word em-
beddings, previous utterance representations
and previous predicted DA tags from context.

3.1 Model Representation
Formally, we model each dialogue conversa-
tion D as a sequence of utterances U =
{U1, U2, U3, ..., Un} paired with a sequence of
DA labels Y = {da1, da2, da3, ..., dan}; each ut-
terance Ut ∈ U is a sequence of words Ut =
{w1

t , w
2
t , ..., w

m
t }.

Figure 1 shows the overall architecture of our
model in which Ut represents the current utterance
and Ut−1 represents the previous utterance. We
use word embeddings to extract the lexical feature
representations from the transcripts, converting the
utterances from word sequences into sequences of
word vectors. We compared the use of randomly
initialised embeddings, GloVe pretrained embed-
dings (Pennington et al., 2014), GloVe embeddings
trained on SwDA and CCC corpus, and ELMo em-
beddings (Peters et al., 2018).

This word representation layer feeds into a
BiLSTM, producing a representation of an ut-
terance as a sequence of hidden vectors ht =
{h1t , h2t , ..., hmt }. We use an attention mechanism
to weight these and aggregate them into a single
utterance representation, an attention vector ct is
representing the whole utterance Ut. We then con-
catenate the vector for the current utterance ct with
various combinations of information from previous
context: the previous utterance vector ct−1, previ-
ous DA (dat−1) (gold-standard or predicted, see
Section 4), and their preceding neighbours ct−2,
dat−2. These concatenated vectors are then en-
coded by a second LSTM (here, we use a unidirec-
tional left-to-right LSTM, rather than bidirectional,
to stay compatible with utterance-by-utterance on-
line processing); the resulting sequence of hidden
vectors H={H1, H2, ...,Hn} is then used to predict
dat, the DA label of the current utterance Ut.

4 Experiments

4.1 DA filtering
To keep our approach as domain- and dataset-
general as possible, we start with the standard
DAMSL tagset (Stolcke et al., 2000) and adapt
it. Based on the clinical studies described in Sec-
tion 2, we keep 17 specific DA tags of interest from
DAMSL; split 2 of them each into 2 sub-categories;
and collapse all other tags into a single other
tag, giving a total of 20 tags. The two new DA
tags are clarification-request (qc) and statement-
answer (sa): clarification-request (qc) is a sub-
category of signal-non-understanding (br) which
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Figure 1: Model architecture for DA classification with one utterance and one DA as context.

requests more specific information (see e.g. Purver
et al., 2001; Rodrı́guez and Schlangen, 2004);
while statement-answer (sa) is a sub-category of
declarative-statement (sd) used as an answer to
a wh-question (qw), open-question (qo) or or-
question (qr). The full tagset1 is shown in Table 1.

4.2 Datasets

We evaluated our model on two datasets. First,
the standard Switchboard Corpus (SwDA) tran-
scripts, a corpus of 1155 five-minute two-speaker
telephone dialogues, containing 205K utterances
in total (Jurafsky et al., 1997). Second, the Caroli-
nas Conversation Collection (CCC)2 transcripts,
a corpus of transcribed audio about the health of
people over 65 years of age in natural conversations
(Pope and Davis, 2011). The CCC is a systematic
collection of two cohorts: one contains conversa-
tions of 125 patients with AD who spoke twice at
least with a researcher; the other contains conver-
sations from elderly persons with different medi-
cal conditions, recorded twice a year, once with a
researcher and once with a community person in

1The annotation guidelines are available from
https://osf.io/8w9z2/?view_only=
ee08242870f24ae7ab6754ddf9a0176a.

2https://carolinaconversations.musc.
edu/

the home or community settings. Each patient is
interviewed by a different interviewer. The CCC in-
cludes some uniform questions that are collection-
specific for people specific to health conditions,
diseases, and cognitively-impaired speakers with
dementia. It is transcribed but not annotated with
DA tags. Access to the data was granted after ethi-
cal review by the both Queen Mary University of
London (via QMERC2019/04 dated:25-04-2019)
and MUSC.

4.2.1 Manually Tagged Annotations
We performed manual annotation of the CCC cor-
pus with DA tags using the SwDA-derived tagset
of Section 4.1 above. We annotated 20 conversa-
tions with 10 Non-AD patients from one cohort,
and 10 conversations with AD patients from the
other, giving a total of 30 conversations 3. Compar-
ing three annotators on one sample conversation,
we achieved an inter-rater agreement of 0.844.

For the SwDA corpus, we reduced the orig-
inal 42-tag labels to our reduced tagset. This
required manual re-tagging of some signal non-
understanding utterances with the new subcate-

3The annotations are available for research community for
further followup work and can be useful after getting access
to CCC dataset: https://osf.io/8w9z2/?view_
only=ee08242870f24ae7ab6754ddf9a0176a

https://osf.io/8w9z2/?view_only=ee08242870f24ae7ab6754ddf9a0176a
https://osf.io/8w9z2/?view_only=ee08242870f24ae7ab6754ddf9a0176a
https://carolinaconversations.musc.edu/
https://carolinaconversations.musc.edu/
https://osf.io/8w9z2/?view_only=ee08242870f24ae7ab6754ddf9a0176a
https://osf.io/8w9z2/?view_only=ee08242870f24ae7ab6754ddf9a0176a
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Tagset Label Example Percentage in SWDA
Yes-No Question qy Did you go anywhere today? 2%
Wh-Question qw When do you have any time to do your homework? 1%
Declarative Yes-No Question qyˆd You have two kids? 1%
Declarative Wh-Question qwˆd Doing what? <0.1%
Or Question qr Did he um, keep him or did he throw him back? 0.1%
Tag Question ˆg But they’re pretty aren’t they? <0.1%
Open ended question qo And uh -how do you think -that work helps you? 0.3%
Clarification Question qc Next Tuesday? -
Signal Non-understanding br Pardon? 0.1%
Backchannel in question form bh Really? 1%
Yes answer ny Yeah. 1%
Yes- plus expansion nyˆe Yeah, but they’re . 0.4%
Affirmative non-yes answer na Oh I think so. [laughs]? 0.4%
No answer nn No 1%
Negative non-no answers nnˆe No, I belonged to the Methodist church. 0.1%
Other answers no I, I don’t know. 1%
Statement answer sa Popcorn shrimp and it was leftover from yesterday. -
Backchannel(continuer) b Uh-huh 19%
Repeat phrase bˆm Ahh, Corn Bread. 0.3%
Other Other (everything else) 71.1%

Table 1: Rare class DA tagset with their Labels and Example.

Class Prec. Rec. F1
sa 1 0.83 0.90
sd 0.86 1 0.92

Table 2: Prediction score for Rule-based classification,

Dataset SwDA CCC
Transcripts 1115 30
Total utterances 142022 5082
Training utterances 111356 -
Test utterances 27840 5082

Table 3: Both datasets with number of utterances.

gory clarification-request, and similarly re-tagging
some declarative statement utterances as statement
answer (sa). The latter could be achieved semi-
automatically, as the new statement answer cate-
gory can only apply in response to qw, qr, and qo
questions: we took 8 conversations from the SwDA
corpus containing 27 questions (qw, qr, qo), and
manually re-tagged their answers from sd to sa.
From this, we then built a rule-based classifier to
derive simple rules for conversion of sd statements
to sa tags, applied to the rest of the corpus. The
accuracy of this rule-based classifier is reported in
Table 2. We then used the standard train/test split
for SwDA; we train only on SwDA, keeping CCC
purely as a test set. Table 3 shows the statistics
from both corpora.

4.3 Implementation and metrics

We performed a grid search for hyperparameter
tuning, changing one hyperparameter at a time. We

trained our model using ADAM (Kingma and Ba,
2014) with a learning rate of 0.01 and used cate-
gorical cross-entropy as the loss function for the
multi-class outcomes. As the classes in our data
are highly imbalanced, we use a class-weighted
objective function to prevent over-prioritising more
common classes; use scikit-learn’s StratifiedShuf-
fleSplit (a merge of StratifiedKFold and Shuffle-
Split) to preserve the percentage of each class in
each fold. Embedding size was set to 100 dimen-
sions for both simple word embeddings and GloVe
pretrained embeddings, with 1024 dimensions for
ELMo embeddings. We report accuracy, macro-
average precision (Prec.), recall (Rec.), and F1
score for multi-class classification. We choose
macro-average measures as our data is highly im-
balanced and we are particularly interested in the
rare DA classes.

Baseline Model We define our base model for
single utterance classifications at the sentence level
without including any contextual utterance or DA
information.

5 Results

Table 4 shows the performance of our baseline
model (without context) and the proposed mod-
els with a range of context settings: with one, two,
and three previous utterances and previous DA tags
as context. Our best baseline model (using ELMo
embeddings) yields a macro-averaged F1 score of
0.46 on the SwDA test set and 0.34 on the CCC test
set. Results are improved by adding contextual in-
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Context Embedding SwDA test set CCC test set
Prec. Rec. F1 Acc. Prec. Rec. F1 Acc.

No Context No Pretrain 0.42 0.47 0.42 0.79 0.33 0.34 0.31 0.50
(Baseline) Glove 0.44 0.46 0.44 0.83 0.38 0.36 0.32 0.53

ELMo 0.45 0.55 0.46 0.80 0.37 0.37 0.34 0.52
1 utt only No Pretrain 0.45 0.57 0.49 0.81 0.44 0.44 0.41 0.55

Glove 0.48 0.57 0.51 0.83 0.46 0.48 0.43 0.57
ELMo 0.43 0.54 0.45 0.78 0.40 0.38 0.35 0.52

1 utt & 1 DA No Pretrain 0.52 0.62 0.56 0.87 0.49 0.45 0.44 0.62
Glove 0.55 0.62 0.57 0.88 0.48 0.47 0.45 0.62
Glove Swda-CCC 0.57 0.61 0.58 0.88 0.51 0.48 0.45 0.66
Glove (SP info.) 0.54 0.64 0.57 0.87 0.46 0.46 0.43 0.64
ELMo 0.55 0.64 0.58 0.88 0.47 0.43 0.40 0.62

2 utt only No Pretrain 0.46 0.53 0.49 0.82 0.37 0.36 0.33 0.53
Glove 0.48 0.57 0.50 0.82 0.44 0.43 0.40 0.55
ELMo 0.42 0.45 0.40 0.81 0.40 0.38 0.33 0.51

2 utt & 2 DAs No Pretrain 0.52 0.62 0.56 0.87 0.44 0.45 0.42 0.63
Glove 0.56 0.59 0.57 0.88 0.48 0.46 0.43 0.69
ELMo 0.59 0.59 0.56 0.88 0.49 0.43 0.42 0.63

3 utt only No Pretrain 0.35 0.49 0.40 0.77 0.42 0.33 0.33 0.49
Glove 0.32 0.43 0.35 0.79 0.35 0.31 0.3 0.51
ELMo 0.44 0.45 0.39 0.76 0.33 0.38 0.3 0.52

3 utt & 3 DAs No Pretrain 0.51 0.59 0.54 0.87 0.39 0.41 0.37 0.60
Glove 0.52 0.64 0.56 0.87 0.44 0.45 0.41 0.61
ELMo 0.51 0.53 0.48 0.88 0.41 0.43 0.36 0.60

Table 4: Accuracy, macro-average precision, recall, and F1 score for different contexts with different word embed-
dings on SwDA test set and CCC test set.

formation from previous utterances and further im-
proved by adding previous DA labels. Our model
achieved a macro-average F1 score of 0.51 with
only one utterance as context, further improved by
to 0.57 by considering the previous utterance DA
label (SwDA corpus, GloVe embeddings). With
ELMo embeddings, F1 score is lower than GloVe
for one utterance context (0.45 F1) but increases
more when adding the DA information, giving
our best performance (Rec.:0.64, F1: 0.58, Acc.:
0.88) on SwDA. Transferring the model learned on
SwDA to the AD-specific CCC corpus also gives its
best result in this setting: we obtain our best macro
F1 score of 0.45 on CCC when using one preced-
ing utterance and one DA as context with GloVe
embeddings. Using GloVe embeddings trained on
the SwDA and CCC data perhaps gives slight im-
provements over the standard pre-trained GloVe,
but they are small (Table 4).

We also experimented with different variants of
including speaker identity information (e.g. by con-
catenating speaker ID with DA history); this did
not improve results, so we report it only for the best
context setting as illustration. Overall, these results
suggest that the single immediately preceding ut-
terance and DA label have the largest impact on
performance: including more context history does
not help, and using preceding DAs as well as pre-
ceding utterances as context is more effective than

using utterances alone. Overall, all the methods
using context yield significant improvement over
the baseline.

Model DA Prec. Rec. F1
1 utt & 1 DA G 0.55 0.62 0.57
1 utt & 1 DA P 0.51 0.54 0.49
2 utt & 2 DAs G 0.56 0.59 0.57
2 utt & 2 DAs P 0.51 0.52 0.48
3 utt & 3 DAs G 0.52 0.64 0.56
3 utt & 3 DAs P 0.58 0.49 0.51

Table 5: Comparison of models using gold-standard
(G) DAs label as context vs using predicted (P) DAs as
context on SwDA test set. These reported results are
macro-averages.

Table 4 uses gold-standard contextual DA tag
information; this raises the question of whether
adding DA information would be less effective
when using predictions. We therefore compared
the use of predicted (P) DA labels vs. gold-standard
(G) DA labels as context when testing, shown in Ta-
ble 5. We achieve better performance when using
the gold-standard labels in both training and testing,
as expected; on the other hand, when training on
gold-standard labels but using previously predicted
DAs as context during testing — a more realistic
approach in real-time systems — we achieve rea-
sonable performance which improves as the context
window increases, suggesting that further improve-
ments may be gained by using more predicted DA
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labels as context.
Our interest, of course, is not in macro-average

figures but in predicting the distribution over the
individual DA classes. We therefore, examine the
class-wise prediction scores, showing a selection
of classes in Figure 2. We note that performance
exceeds that of Raheja and Tetreault (2019) (see
Section 2) by a very large margin in all cases. Class-
wise results for each class in our tagset can be found
in supplementary materials.

Figure 2: Comparison of class-wise recall for individ-
ual DA tags on both SwDA and CCC datasets.

Error Analysis We conducted an error analysis
to closely look into the lower performance of the
model for some DA classes. We observed poor
recall scores for qwˆd in both corpora and for qo
questions in CCC. Most of the qo and qwˆd ques-
tions are mislabeled with qw tag or other tag. This
is somewhat reasonable, as linguistically the utter-
ances of these classes are quite similar, although qw
and qwˆd express more specific questions whereas
qo utterances tend to be general, and they share
many syntactic cues which can easily confuse the
model. A few qwˆd questions were also misclassi-
fied as either qyˆd or qy.

Clarification request (qc) recall values are low
in both datasets; upon analysis, we found that qc
is often confused with signal non-understanding
(br) and wh-questions (qw). For example, qc ut-
terances with forms such as ‘Youre now in what?’,
‘You must be what?’, ‘being what?’, ‘what’s that?’,
although requesting clarification in context, are
understandably easy to mislabel as qw. Encour-
agingly, including utterance/DA context improved
these results. Recall scores for backchannels (b)
are high for SwDA but lower for CCC. One pos-
sible reason could be the different transcription
protocols in the two datasets: some transcribers
use ‘yeah’, ‘yup’ while others can use the standard

form ‘yes’ to represent a backchannel. Some sur-
face forms of backchannels are also present in the
CCC dataset but did not occur in SwDA, and are
thus misclassified when testing on CCC.

We further analyzed the effect of adding utter-
ance/DA context on individual DA classes, with
results shown in Figure 3 and Figure 4. Yes-answer
(ny) recall improved from 0.22 to 0.58 when in-
cluding only one preceding utterance, and is further
improved to 0.75 by adding the previous DA label.
A simple statement ‘yes’ can be an answer or a
backchannel (amongst others); the information that
the previous DA label may be a yes-no question
(qy) will help in distinguishing the two.

Figure 3: Effect of including context on DA prediction
on CCC test set.

Figure 4: Effect of including context on DA prediction
on SwDA test set.

6 Using DA tag outputs for AD diagnosis

Finally, we performed an initial investigation of the
use of our tagger outputs in the eventually intended
downstream task: the usage of these DA patterns to
diagnose AD. We treat this here as a classification
task, distinguishing between dialogues involving
AD patients and Non-AD patients (similar age con-
trols) in the CCC corpus. As an initial experiment,
we use the DA classes (shown in Table 6) investi-
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gated in our experiments above as features within
a linear SVM classifier, and report results in Ta-
ble 7. We tested the use of the DA classes both
as unigrams (f1) and as bigrams (f2) to capture
characteristic local DA sequences. For this experi-
ment, we only used bigram sequences containing
the meaning-coordination qc and br DAs in patient
(P) utterances, preceded by question DAs from the
interviewer (I). We also computed two aggregate

Features Type
(Total)

Details

f1 Unigrams
(36)

unigram DAs such as:
P qy, P ny, P br, P na,
P sa, I qo, I qw, I b, I qy

f2 Bigrams
(17)

bigram DAs sequences such as:
I qw–P br,
I qo–P ny, I sa–P qc
I qw–P qc, I qwˆd–P qc

f3 Confusion
(2)

question ratio, confusion ratio

f4 Others
(4)

other features from dialogues
includes:
normalized turn duration,
Avg number of words per minute,
turn switches per minute,
number of overlaps

Table 6: Different features for AD classification task.

features from these DAs as proxies for levels of
patient confusion (f3): question ratio (how many
questions asked by the patient (P) out of total ut-
terances spoken by P) and confusion ratio (ratio
of total br & qc to the total questions asked by
P). Question ratios were previously used by Khod-
abakhsh et al. (2015) in AD identification, consid-
ering question words such as ‘what’, ‘which’ etc.
as a mark of confusion or request for further details.
Here, we replicate that as question ratio, and add
the more specific use of qc and br tags as confu-
sion ratio. We further experiment with other useful
interactional features (f4) such as normalized turn
lengths, an average number of words per minute
(as used by Luz et al. (2018) for AD prediction),
turn switches per minute, and number of overlaps.
Overlaps represent the number of segments spoken
simultaneously by both speakers, with the intuition
that these may be attributed to speech initiation
difficulties.

We achieved an accuracy of 0.65 with only uni-
grams, 0.70 when including bigram sequences and
confusion features, over a random baseline4 of 0.50.

4An alternative, stronger baseline could be the use of a
standard DA tagger trained on the general 42-class tagset, to

Model Features class Prec. Rec. F1 Acc.
Random - AD 0.50 0.50 0.50 0.50
(baseline) Non-AD 0.50 0.50 0.50
SVM f1 AD 0.67 0.60 0.63 0.65

Non-AD 0.67 0.70 0.67
SVM f1,f2,f3 AD 0.68 0.80 0.73 0.70

Non-AD 0.75 0.60 0.67
SVM f1,f2,f3,f4 AD 0.75 0.90 0.82 0.80

Non-AD 0.87 0.70 0.78

Table 7: Results on the AD classification task on CCC
data.

Combining these with other interactional features
improved the results to an overall accuracy of 0.80.
We conclude that our rare-class tagger provides
suitable accuracy to be used in future work in AD
diagnosis and monitoring.

7 Conclusion

This work has presented a DA tagger (a hierarchical
BiLSTM model) with a context-based learning ap-
proach for the classification of rare DAs including
clarification requests, non-understanding signals,
questions, and responses. By using suitable choices
of embeddings and the inclusion of contextual his-
tory, together with a weighted cost function, we
achieve good performance on these rare classes.
For SwDA, our model achieved F1 of 0.58 and
recall of 0.64 when using the immediate preced-
ing utterance and DA label, compared to F1 of
0.46, recall of 0.55 without context. We found that
while gold-standard DA information from context
gives better performance, the performance using
predicted labels can be improved by using longer
contextual sequences.

The resulting DA tagger utilizes only minimal
context of a few preceding utterances and DAs,
rather than the whole conversation, and thus is suit-
able for dialogue systems in real-time, due to the
left-to-right, incremental nature of dialogue. Ex-
isting models which take into account the whole
conversation can achieve overall higher accuracy
on the general DA tagging task, and so might be
expected to improve our rare-class task as well,
but require information about future utterances (Li
et al., 2018; Raheja and Tetreault, 2019).

Its rare-class DA outputs show good potential as
features to distinguish between AD and Non-AD
patients in interaction, suggesting that they can be
useful within tools to aid in diagnosis while provid-

isolate the improvement gained specifically by our focus on
rare class DAs. Unfortunately this is not currently possible, as
the CCC corpus has no transcripts tagged in this way.
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ing useful, interpretable information about interac-
tion structure, mutual understanding, and question-
answering behavior. Phenomena such as clarifi-
cation requests and signals of non-understanding
seem to be quite general across languages and cul-
tures (Dingemanse et al., 2015) and we would ex-
pect these sorts of conversational features to be
more language- and domain-independent than ap-
proaches based on vocabulary, syntax, etc for AD
diagnosis. We note, however, that one limitation of
this study is that the AD patients in the CCC dataset
are all older patients with already diagnosed demen-
tia, and can thus only allow us to observe patterns
associated with AD at a relatively advanced stage,
and not directly tell us whether these extend to
early-stage diagnosis.

In future, we will improve the performance of
our rare class DA tagger with the inclusion of
acoustic features from speech data. We also hope to
explore more informative DA sequences, including
other bigram and trigram sequences, while retain-
ing the interpretable nature of the model overall.
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