@inproceedings{niu-etal-2021-statistically,
title = "Statistically Evaluating Social Media Sentiment Trends towards {COVID}-19 Non-Pharmaceutical Interventions with Event Studies",
author = "Niu, Jingcheng and
Rees, Erin and
Ng, Victoria and
Penn, Gerald",
editor = "Magge, Arjun and
Klein, Ari and
Miranda-Escalada, Antonio and
Al-garadi, Mohammed Ali and
Alimova, Ilseyar and
Miftahutdinov, Zulfat and
Farre-Maduell, Eulalia and
Lopez, Salvador Lima and
Flores, Ivan and
O'Connor, Karen and
Weissenbacher, Davy and
Tutubalina, Elena and
Sarker, Abeed and
Banda, Juan M and
Krallinger, Martin and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of the Sixth Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task",
month = jun,
year = "2021",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.smm4h-1.1",
doi = "10.18653/v1/2021.smm4h-1.1",
pages = "1--6",
abstract = "In the midst of a global pandemic, understanding the public{'}s opinion of their government{'}s policy-level, non-pharmaceutical interventions (NPIs) is a crucial component of the health-policy-making process. Prior work on CoViD-19 NPI sentiment analysis by the epidemiological community has proceeded without a method for properly attributing sentiment changes to events, an ability to distinguish the influence of various events across time, a coherent model for predicting the public{'}s opinion of future events of the same sort, nor even a means of conducting significance tests. We argue here that this urgently needed evaluation method does already exist. In the financial sector, event studies of the fluctuations in a publicly traded company{'}s stock price are commonplace for determining the effects of earnings announcements, product placements, etc. The same method is suitable for analysing temporal sentiment variation in the light of policy-level NPIs. We provide a case study of Twitter sentiment towards policy-level NPIs in Canada. Our results confirm a generally positive connection between the announcements of NPIs and Twitter sentiment, and we document a promising correlation between the results of this study and a public-health survey of popular compliance with NPIs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="niu-etal-2021-statistically">
<titleInfo>
<title>Statistically Evaluating Social Media Sentiment Trends towards COVID-19 Non-Pharmaceutical Interventions with Event Studies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jingcheng</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erin</namePart>
<namePart type="family">Rees</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerald</namePart>
<namePart type="family">Penn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Magge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ari</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Miranda-Escalada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="given">Ali</namePart>
<namePart type="family">Al-garadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilseyar</namePart>
<namePart type="family">Alimova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zulfat</namePart>
<namePart type="family">Miftahutdinov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eulalia</namePart>
<namePart type="family">Farre-Maduell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salvador</namePart>
<namePart type="given">Lima</namePart>
<namePart type="family">Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Flores</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karen</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Tutubalina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abeed</namePart>
<namePart type="family">Sarker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Banda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Krallinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the midst of a global pandemic, understanding the public’s opinion of their government’s policy-level, non-pharmaceutical interventions (NPIs) is a crucial component of the health-policy-making process. Prior work on CoViD-19 NPI sentiment analysis by the epidemiological community has proceeded without a method for properly attributing sentiment changes to events, an ability to distinguish the influence of various events across time, a coherent model for predicting the public’s opinion of future events of the same sort, nor even a means of conducting significance tests. We argue here that this urgently needed evaluation method does already exist. In the financial sector, event studies of the fluctuations in a publicly traded company’s stock price are commonplace for determining the effects of earnings announcements, product placements, etc. The same method is suitable for analysing temporal sentiment variation in the light of policy-level NPIs. We provide a case study of Twitter sentiment towards policy-level NPIs in Canada. Our results confirm a generally positive connection between the announcements of NPIs and Twitter sentiment, and we document a promising correlation between the results of this study and a public-health survey of popular compliance with NPIs.</abstract>
<identifier type="citekey">niu-etal-2021-statistically</identifier>
<identifier type="doi">10.18653/v1/2021.smm4h-1.1</identifier>
<location>
<url>https://aclanthology.org/2021.smm4h-1.1</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>1</start>
<end>6</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Statistically Evaluating Social Media Sentiment Trends towards COVID-19 Non-Pharmaceutical Interventions with Event Studies
%A Niu, Jingcheng
%A Rees, Erin
%A Ng, Victoria
%A Penn, Gerald
%Y Magge, Arjun
%Y Klein, Ari
%Y Miranda-Escalada, Antonio
%Y Al-garadi, Mohammed Ali
%Y Alimova, Ilseyar
%Y Miftahutdinov, Zulfat
%Y Farre-Maduell, Eulalia
%Y Lopez, Salvador Lima
%Y Flores, Ivan
%Y O’Connor, Karen
%Y Weissenbacher, Davy
%Y Tutubalina, Elena
%Y Sarker, Abeed
%Y Banda, Juan M.
%Y Krallinger, Martin
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task
%D 2021
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F niu-etal-2021-statistically
%X In the midst of a global pandemic, understanding the public’s opinion of their government’s policy-level, non-pharmaceutical interventions (NPIs) is a crucial component of the health-policy-making process. Prior work on CoViD-19 NPI sentiment analysis by the epidemiological community has proceeded without a method for properly attributing sentiment changes to events, an ability to distinguish the influence of various events across time, a coherent model for predicting the public’s opinion of future events of the same sort, nor even a means of conducting significance tests. We argue here that this urgently needed evaluation method does already exist. In the financial sector, event studies of the fluctuations in a publicly traded company’s stock price are commonplace for determining the effects of earnings announcements, product placements, etc. The same method is suitable for analysing temporal sentiment variation in the light of policy-level NPIs. We provide a case study of Twitter sentiment towards policy-level NPIs in Canada. Our results confirm a generally positive connection between the announcements of NPIs and Twitter sentiment, and we document a promising correlation between the results of this study and a public-health survey of popular compliance with NPIs.
%R 10.18653/v1/2021.smm4h-1.1
%U https://aclanthology.org/2021.smm4h-1.1
%U https://doi.org/10.18653/v1/2021.smm4h-1.1
%P 1-6
Markdown (Informal)
[Statistically Evaluating Social Media Sentiment Trends towards COVID-19 Non-Pharmaceutical Interventions with Event Studies](https://aclanthology.org/2021.smm4h-1.1) (Niu et al., SMM4H 2021)
ACL