Abstract
This paper describes models developed for the Social Media Mining for Health (SMM4H) 2021 shared tasks. Our team participated in the first subtask that classifies tweets with Adverse Drug Effect (ADE) mentions. Our best performing model utilizes BERTweet followed by a single layer of BiLSTM. The system achieves an F-score of 0.45 on the test set without the use of any auxiliary resources such as Part-of-Speech tags, dependency tags, or knowledge from medical dictionaries.- Anthology ID:
- 2021.smm4h-1.15
- Volume:
- Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task
- Month:
- June
- Year:
- 2021
- Address:
- Mexico City, Mexico
- Editors:
- Arjun Magge, Ari Klein, Antonio Miranda-Escalada, Mohammed Ali Al-garadi, Ilseyar Alimova, Zulfat Miftahutdinov, Eulalia Farre-Maduell, Salvador Lima Lopez, Ivan Flores, Karen O'Connor, Davy Weissenbacher, Elena Tutubalina, Abeed Sarker, Juan M Banda, Martin Krallinger, Graciela Gonzalez-Hernandez
- Venue:
- SMM4H
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 88–90
- Language:
- URL:
- https://aclanthology.org/2021.smm4h-1.15
- DOI:
- 10.18653/v1/2021.smm4h-1.15
- Bibkey:
- Cite (ACL):
- Tanay Kayastha, Pranjal Gupta, and Pushpak Bhattacharyya. 2021. BERT based Adverse Drug Effect Tweet Classification. In Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task, pages 88–90, Mexico City, Mexico. Association for Computational Linguistics.
- Cite (Informal):
- BERT based Adverse Drug Effect Tweet Classification (Kayastha et al., SMM4H 2021)
- Copy Citation:
- PDF:
- https://aclanthology.org/2021.smm4h-1.15.pdf
Export citation
@inproceedings{kayastha-etal-2021-bert, title = "{BERT} based Adverse Drug Effect Tweet Classification", author = "Kayastha, Tanay and Gupta, Pranjal and Bhattacharyya, Pushpak", editor = "Magge, Arjun and Klein, Ari and Miranda-Escalada, Antonio and Al-garadi, Mohammed Ali and Alimova, Ilseyar and Miftahutdinov, Zulfat and Farre-Maduell, Eulalia and Lopez, Salvador Lima and Flores, Ivan and O'Connor, Karen and Weissenbacher, Davy and Tutubalina, Elena and Sarker, Abeed and Banda, Juan M and Krallinger, Martin and Gonzalez-Hernandez, Graciela", booktitle = "Proceedings of the Sixth Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task", month = jun, year = "2021", address = "Mexico City, Mexico", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.smm4h-1.15", doi = "10.18653/v1/2021.smm4h-1.15", pages = "88--90", abstract = "This paper describes models developed for the Social Media Mining for Health (SMM4H) 2021 shared tasks. Our team participated in the first subtask that classifies tweets with Adverse Drug Effect (ADE) mentions. Our best performing model utilizes BERTweet followed by a single layer of BiLSTM. The system achieves an F-score of 0.45 on the test set without the use of any auxiliary resources such as Part-of-Speech tags, dependency tags, or knowledge from medical dictionaries.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="kayastha-etal-2021-bert"> <titleInfo> <title>BERT based Adverse Drug Effect Tweet Classification</title> </titleInfo> <name type="personal"> <namePart type="given">Tanay</namePart> <namePart type="family">Kayastha</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pranjal</namePart> <namePart type="family">Gupta</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pushpak</namePart> <namePart type="family">Bhattacharyya</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021-06</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task</title> </titleInfo> <name type="personal"> <namePart type="given">Arjun</namePart> <namePart type="family">Magge</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ari</namePart> <namePart type="family">Klein</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Miranda-Escalada</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mohammed</namePart> <namePart type="given">Ali</namePart> <namePart type="family">Al-garadi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ilseyar</namePart> <namePart type="family">Alimova</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zulfat</namePart> <namePart type="family">Miftahutdinov</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eulalia</namePart> <namePart type="family">Farre-Maduell</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Salvador</namePart> <namePart type="given">Lima</namePart> <namePart type="family">Lopez</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ivan</namePart> <namePart type="family">Flores</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karen</namePart> <namePart type="family">O’Connor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Davy</namePart> <namePart type="family">Weissenbacher</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Elena</namePart> <namePart type="family">Tutubalina</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Abeed</namePart> <namePart type="family">Sarker</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Juan</namePart> <namePart type="given">M</namePart> <namePart type="family">Banda</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Krallinger</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Graciela</namePart> <namePart type="family">Gonzalez-Hernandez</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Mexico City, Mexico</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This paper describes models developed for the Social Media Mining for Health (SMM4H) 2021 shared tasks. Our team participated in the first subtask that classifies tweets with Adverse Drug Effect (ADE) mentions. Our best performing model utilizes BERTweet followed by a single layer of BiLSTM. The system achieves an F-score of 0.45 on the test set without the use of any auxiliary resources such as Part-of-Speech tags, dependency tags, or knowledge from medical dictionaries.</abstract> <identifier type="citekey">kayastha-etal-2021-bert</identifier> <identifier type="doi">10.18653/v1/2021.smm4h-1.15</identifier> <location> <url>https://aclanthology.org/2021.smm4h-1.15</url> </location> <part> <date>2021-06</date> <extent unit="page"> <start>88</start> <end>90</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T BERT based Adverse Drug Effect Tweet Classification %A Kayastha, Tanay %A Gupta, Pranjal %A Bhattacharyya, Pushpak %Y Magge, Arjun %Y Klein, Ari %Y Miranda-Escalada, Antonio %Y Al-garadi, Mohammed Ali %Y Alimova, Ilseyar %Y Miftahutdinov, Zulfat %Y Farre-Maduell, Eulalia %Y Lopez, Salvador Lima %Y Flores, Ivan %Y O’Connor, Karen %Y Weissenbacher, Davy %Y Tutubalina, Elena %Y Sarker, Abeed %Y Banda, Juan M. %Y Krallinger, Martin %Y Gonzalez-Hernandez, Graciela %S Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task %D 2021 %8 June %I Association for Computational Linguistics %C Mexico City, Mexico %F kayastha-etal-2021-bert %X This paper describes models developed for the Social Media Mining for Health (SMM4H) 2021 shared tasks. Our team participated in the first subtask that classifies tweets with Adverse Drug Effect (ADE) mentions. Our best performing model utilizes BERTweet followed by a single layer of BiLSTM. The system achieves an F-score of 0.45 on the test set without the use of any auxiliary resources such as Part-of-Speech tags, dependency tags, or knowledge from medical dictionaries. %R 10.18653/v1/2021.smm4h-1.15 %U https://aclanthology.org/2021.smm4h-1.15 %U https://doi.org/10.18653/v1/2021.smm4h-1.15 %P 88-90
Markdown (Informal)
[BERT based Adverse Drug Effect Tweet Classification](https://aclanthology.org/2021.smm4h-1.15) (Kayastha et al., SMM4H 2021)
- BERT based Adverse Drug Effect Tweet Classification (Kayastha et al., SMM4H 2021)
ACL
- Tanay Kayastha, Pranjal Gupta, and Pushpak Bhattacharyya. 2021. BERT based Adverse Drug Effect Tweet Classification. In Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task, pages 88–90, Mexico City, Mexico. Association for Computational Linguistics.