@inproceedings{lee-etal-2021-classification,
title = "Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential {COVID}-19 Cases Using {R}o{BERT}a Transformers",
author = "Lee, Lung-Hao and
Hung, Man-Chen and
Lu, Chien-Huan and
Chen, Chang-Hao and
Lee, Po-Lei and
Shyu, Kuo-Kai",
booktitle = "Proceedings of the Sixth Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task",
month = jun,
year = "2021",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.smm4h-1.18",
doi = "10.18653/v1/2021.smm4h-1.18",
pages = "98--101",
abstract = "This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2021-classification">
<titleInfo>
<title>Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lung-Hao</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Man-Chen</namePart>
<namePart type="family">Hung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chien-Huan</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chang-Hao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Po-Lei</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuo-Kai</namePart>
<namePart type="family">Shyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.</abstract>
<identifier type="citekey">lee-etal-2021-classification</identifier>
<identifier type="doi">10.18653/v1/2021.smm4h-1.18</identifier>
<location>
<url>https://aclanthology.org/2021.smm4h-1.18</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>98</start>
<end>101</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers
%A Lee, Lung-Hao
%A Hung, Man-Chen
%A Lu, Chien-Huan
%A Chen, Chang-Hao
%A Lee, Po-Lei
%A Shyu, Kuo-Kai
%S Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task
%D 2021
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F lee-etal-2021-classification
%X This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.
%R 10.18653/v1/2021.smm4h-1.18
%U https://aclanthology.org/2021.smm4h-1.18
%U https://doi.org/10.18653/v1/2021.smm4h-1.18
%P 98-101
Markdown (Informal)
[Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers](https://aclanthology.org/2021.smm4h-1.18) (Lee et al., SMM4H 2021)
ACL