
Proceedings of the Workshop on Speech and Music Processing (SMP-2021), pages 24–32
co-located with ICON-2021, December 16-19, 2021, Silchar, India. ©2021 NLP Association of India (NLPAI)

24

Comparative Analysis of Melodia and Time-Domain Adaptive Filtering
based Model for Melody Extraction from Polyphonic Music

Ranjeet Kumar Anupam Biswas Pinki Roy Yeshwant Singh
Department of Computer Science and Engineering

National Institute of Technology Silchar, Assam, India
{ranjeet rs, anupam, pinki, yeshwant rs}@cse.nits.ac.in

Abstract

Among the many applications of Music Infor-
mation Retrieval (MIR), melody extraction is
one of the most essential. It has risen to the
top of the list of current research challenges
in the field of MIR applications. We now
need new means of defining, indexing, find-
ing, and interacting with musical information,
given the tremendous amount of music avail-
able at our fingertips. This article looked at
some of the approaches that open the door to
a broad variety of applications, such as auto-
matically predicting the pitch sequence of a
melody straight from the audio signal of a poly-
phonic music recording, commonly known as
melody extraction. It is pretty easy for hu-
mans to identify the pitch of a melody, but
doing so on an automated basis is very dif-
ficult and time-consuming. In this article, a
comparison is made between the performance
of the currently available melody extraction
approach that is state-of-the-art Melodia and
the technique based on time-domain adaptive
filtering for melody extraction in terms of eval-
uation metrics introduced in MIREX 2005.
Motivating by the same, this paper focuses
on the discussion of datasets and state-of-the-
art approaches for the extraction of the main
melody from music signals. Additionally, a
summary of the evaluation matrices based on
which methodologies have been examined on
various datasets is also present in this paper.

1 Introduction

In recent times, the music business and music sup-
pliers such as Google, Spotify, and others have
seen significant growth. By that time, the music
business had also been reorganized from the cylin-
der age to the digital era, resulting in the current
scenario where consumers may acquire millions of
songs on personal phones or via cloud-based ser-
vices, as well as the future. It is necessary to cope
with the enormous quantity of music to search for

and recover the required record effectively. At the
moment, the primary issue of music suppliers is to
categorize the vast number of songs available on
the market based on their many components, such
as rhythm, pitch, melody, and so forth. When we
need to identify a particular soundtrack, we often
reproduce the melody. There is a great deal of con-
tinuous progress in audio processing, which may
assist customers in interacting with the songs via
their sound component. Music transcription is the
act of translating an aural input into a detailed de-
scription of all the notes being performed (Gómez
et al., 2012). It is a task that a competent mu-
sic student should be able to do very efficiently.
It has, on the other hand, long been the topic of
computer research. Despite this, owing to musical
harmony’s intricate and intentionally overlapping
spectral structure, it has proved to be very difficult
to achieve (Dressler, 2011).

“It is melody that enables us to distinguish one
work from another. It is melody that human beings

are innately able to reproduce by singing,
humming, and whistling. It is melody that makes
music memorable: we are likely to recall a tune

long after we have forgotten its text.”.
(Hofmann-Engl, 1999)

The definition given by Poliner et al. (2007) is
one of the most frequently cited in the literature
and is one of the most widely used:

“roughly speaking, the melody is the single
(monophonic) pitch sequence that a listener might

reproduce if asked to whistle or hum a piece of
polyphonic music, and that a listener would

recognize as being the ‘essence’ of that music
when heard in comparison”.

The melody is restricted to a single sound source
throughout the work being examined, which is
deemed the most prominent instrument or voice
in the mix (Yeh et al., 2012; Klapuri, 2004). When
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polyphonic music is played, the melody is the sin-
gle or monophonic pitch grouping that an audience
may replicate during any moment in time to whis-
tle or hum a piece of the music, so a large number
of listeners would perceive as the ’essence’ of the
music when the music is played in contrast (Reddy
and Rao, 2018). This concept is now susceptible
to a great deal of subjective interpretation since
different members of an audience may hum other
portions in the aftermath of listening to a compara-
ble piece of music.

Because of these vast number of various inter-
pretations of melody and polyphony available, it
becomes easier to categorize melody retrieval as
a signal processing task than it was before.: We
wish to correctly predict the series of f0 values that
correlate to the voices or devices that are promi-
nently featured in a clip of polyphonic music Aside
from that, we must approximate the periods dur-
ing which this voice is absent from the mixture (a
challenge also termed as the ”voicing detection”
issue) (Salamon et al., 2013). While this job may
seem virtually insignificant to a human listener,
many of us are capable of singing along to the
melodies of our favorite songs even if we have no
formal musical training.

It is necessary to automatically acquire a series
of frequency values of the dominant melodic line
for polyphonic audio signals in order to complete
the melody extraction job successfully Fig. 1. As
defined by the American Institute of Music, poly-
phonic music is music in which at least two notes
may be played at the same time on a variety of
instruments (for example, bass, voice, and guitar)
or on a single instrument that can play numerous
notes in a single period (for example, the piano). A
listener may imitate the tunes even if he or she does
not have any musical training. However, when we
try to automate this process, things become a little
more complicated primarily due to two reasons:
First, a polyphonic music signal is generated up
of all the sound waves from all the devices in the
track superimposed on each other. In the spectral
content of the signal, various sources’ frequency
components overlap, making it difficult to assign
particular energy levels in specific frequency bands
to separate instruments’ notes. Second, even af-
ter obtaining a pitches-based representation of the
audio stream, we must still determine the pitch val-
ues that correspond to the dominant melody in the
audio stream.

Figure 1: Melody extraction from audio signal of poly-
phonic music.

The task of automated melody extraction is com-
mon in the area of Music Information Retrieval
(MIR). There have been a plethora of methods
developed for the extraction of melodies from
polyphonic music. Based on the methods used
to develop them, these algorithms can be clas-
sified namely Source separation-based approach
and salience-based approach (Salamon and Gómez,
2012). On the other hand, some methods do not
fall under any of these categories. Algorithmic
technique which is categorised as data-driven ap-
proaches, the power spectrum is directly send to
deep neural network based machine learning sys-
tem, which attempts to determine the melody fre-
quency from each frame.

1.1 Salience-based approach:

Following the principles established by
Scheirer Scheirer (2000), melody extraction
approaches based on salience function are
founded on the concept of “understanding without
separation.” Primarily, the following steps are
required in melody extraction: The majority of
the time, in preprocessing phase, to increase the
melodic content of a composite signal, filtering
is applied to it (?). Aspects of the music signal’s
time-domain samples are divided into frames
of similar length and translated to the spectrum
domain during the spectral representation and
processing step. To follow the f0 transitions in the
dominant instrument, the selected window widths
give sufficient frequency resolution to differentiate
sinusoidal partials (Goto, 2004; Hsu and Jang,
2010). Most techniques handle the modified
signal’s raw spectral peaks. To put it simply,
a salience function is just an evaluation of the
salience of pitch values over time that is dependent
on the recently identified partial peaks. Candidate
melodies for the melody f0 are considered to
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be the peaks in the salience function (Klapuri,
2004). It is necessary to discover the salience
peaks that correlate to actual melody peaks like
the last stage in this process. The majority of
algorithms directly monitor the melody peaks from
the salience function.

1.2 Source separation-based approach:
It is feasible to distinguish the source responsible
for the fundamental frequency from the remainder
of the composite signal by using several source sep-
aration techniques (Ryynänen and Klapuri, 2008).
By considering the polyphonic signal’s power spec-
trum as the sum of lead and harmony voices, it was
suggested to use source separation-based melody
extraction to extract melodies (Durrieu et al., 2010).
It is suggested to characterise lead vocals using a
source-filter-based paradigm, and to describe ac-
companiment as a sum of arbitrary sources with dif-
ferent spectral shapes, respectively. For the source-
filter model, two new models are proposed: the
“Smooth-Instantaneous Mixture Model (SIMM)”
and the “Smooth Gaussian-Scaled Mixture Model
(SGSMM)”. The SIMM is used to represent the
dominating voices, while the SGSMM is used to
represent the accompaniment. The expectation
maximization approach is used to estimate the sys-
tem model parameters. In order to determine the
singer’s f0 contour from the tape, Tachibana et al.
(2010), employed the temporal variability of the
song.

1.3 Data-driven approach:
In contrast to data-driven strategies, which have
only been examined seldom, most algorithms, as
we have previously stated, are based on the salience
function and source separation from music mix-
ing. However, in recent years, this sort of method
has emerged as a promising new field of investiga-
tion (Park and Yoo, 2017; Su, 2018). In order to
visualise the distribution of energy in a music signal
across time and frequency, spectrograms are used
in preprocessing step. To minimise the leakage
that happens during spectral transforms hanning
window is used. The majority of researchers chose
STFT because it gives time-based frequency infor-
mation regarding signals whose frequency compo-
nents fluctuate over time. When it comes to mu-
sic recordings, a time-frequency representation is
provided by the Constant—Q Transform (CQT). In
compared to STFT, CQT is virtually the best fit, and
the resultant representation is very low in dimen-

sionality as a consequence. (Kum et al., 2016; Rao
and Rao, 2010) devise the concept of multi-column
deep neural networks for the extraction of musical
notes As a classification-based technique, Using
the aforementioned methodology, scientists trained
each neural network how to correctly anticipate a
pitch label. Author combined the output of net-
works and post-processed it using a hidden Markov
model to deduce the melodic contour, which they
labelled as a result of their efforts.

Some of the state-of-the-art approaches for ex-
tracting the melody from music signals are de-
scribed in detail in this paper, which also demon-
strates how these techniques are instantly applica-
ble to MIR research. Further results of these mod-
els upon well-known datasets are also analyzed.
The following is the outline for the rest of the pa-
per. Section II describes the experimental setup
in which melody extraction approach has been dis-
cussed and including dataset and performance mea-
sures are also being discussed here. Results of the
assessment are reported in Section III, followed by
a result analysis. finally conclusions in section IV.

2 Experimental setup

2.1 Models:

This section provides a quick overview of some of
the state-of-art ways for extracting melody from a
piece of music data.

2.1.1 Melodia
Salamon and Gómez (2012) proposed a model

which is very popular in the filed of MIR in which
he uses the Pitch Contour Characteristics to extract
the melody from polyphonic music. In this model,
Contour characterization and its use for melodic
filtering are the most significant contributions. As
seen in Fig. 2, this technique is composed of four
major components that work together.

Sinusoid Extraction: Three states are present
in this stage: filtering, spectral transform, and
sinusoid frequency correction. In this case, an
loudness filter (equal) has been applied to increase
frequencies that the ear of human is more sensitive
to. Then the ShortTime Fourier Transform (STFT)
applied and taken small hop size to improve F0
tracking while creating pitch contours. The FFT’s
bin frequencies constrain the position of spectral
peaks, resulting in high peak frequency estimate
errors for low frequencies. For overcome this
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Figure 2: Block diagram of Melodia.

issue, they have calculated peak’s instantaneous
frequency (fi) and amplitude by using phase
spectrum.

f̂i = (ki + κ(ki))
fs
N

(1)

Salience Function: To illustrate the change in
pitch salience over time, a salience function is con-
structed from the spectra that have been extracted
and plotted against time. When this function is
used, the peaks create the F0 candidates for the
main melody. In this model, harmonic summation
is used to calculate salience. An integer multiple
(harmonic) of a frequency’s salience is calculated
as the sum of the weighted energies present there.
The summing solely uses the spectral peaks, exclud-
ing spectral values with masking or noise. Salience
function S(b) at each frame can be evaluated using
following definition:

S(b) =
∑

h

h=1

∑I

i=1
e(âi).g(b, h, f̂i).(âi)

β (2)

where, β represents the parameter of magnitude
compression and g(b, h, f̂i) defines the weighting
function.

Pitch Contours: It is then determined which
peaks at each frame are probable melody F0
possibilities based on the salience function that was
produced. Firstly, non-salient peaks are filtered out
to minimize the noise contours creation. In order
to determine the most appropriate parameters for

contour formation, they compared contours created
from various excerpts to the melodic ground truth
of the excerpts and assessed them in terms of pitch
accuracy and voicing accuracy. After contours
creation, the main challenge is to finding the
specific contours which belongs to pitch. It is
necessary to establish a set of contour attributes
that will be utilised to assist the system in picking
melodic contours in order to do this.

Melody selection and extraction: As an alter-
native to picking melody contours, they formulate
this issue as a contour filtering problem, with ob-
jective being to filter out any contours that are not
melodic. The job of detecting when the melody is
there and when it is not is referred to as voicing de-
tection. In the last stage, choose the peaks that are
associated with the primary melody from among
the remaining shapes.When a frame has more than
one contour, the melody is selected as the peak of
the most salient contour. A frame without a contour
is considered unvoiced.

2.1.2 Model based on Time-Domain Adaptive
Filtering

Model developed by Reddy and Rao (2018) is
basically based on time-domain adaptive filtering.
The suggested approach extracts the voice melody
in phases from polyphonic music. The difference
in excitation intensity between the vocal and non-
vocal regions of the music signal distinguishes the
vocal from the non-vocal regions. The vocal re-
gions are then split into a sequence of notes by
detecting their onsets in the composite signal’s
frequency representation, which is then used to
segment the sequence of notes further. Individual
voice note melodic contours may be obtained by
using adaptive zero-frequency filtering in the time
domain.
In order to distinguish vocal and non-vocal areas,
the music signal is first passed through a zero-
frequency filter (ZFF), after which the vocal re-
gions are segmented into a series of notes is cre-
ated. According to the original ZFF approach, the
monaural speech signal with a single excitation
source is utilised to extract the F0 from the signal
before further processing. The mean subtraction
filter is designed using the time domain autocorre-
lation function to produce the average pitch period,
which is obtained using the time domain autocor-
relation function Music, on the other hand, is a
composite signal that is made up of a number of
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different pitched sources. The autocorrelation func-
tion cannot be used to determine the singer’s reso-
nance frequency or average pitch period because
it is too complex. The next step is to detect the
voiced and unvoiced segments.
Voiced and Unvoiced segment detection: Be-
cause the ZFR attenuates the vocal tract resonances
to a large extent, passing the signal through it
twice has considerably highlighted the source sig-
nal. When comparing the vocal source to the other
sources in a polyphonic music signal with a lead
voice, it is the vocal source that is most prominent.
It is thus possible to identify the vocalic areas by
analysing the strength of excitation (SOE) (Sala-
mon et al., 2014). A consequence of the vocals’
dominance feature is that the ZFF signal contains
a significant amount of energy in the voiced areas
and a very low amount of energy in the regions
which is unvoiced. In order to determine the in-
tensity of the excitation contour, the ZFF signal’s
slope at the instants of zero crossings of the ZFF
signal is calculated.

Voiced Note Onset detection: The melody
source’s fundamental frequency fluctuates greatly
between notes. In order to produce an accurate F0
for the lead voice, a simple mean subtraction fil-
ter is insufficient. By recognising note onsets, the
voiced segments discovered before may be further
split into voiced note-like regions. Signal parame-
ters such as short-time energy, spectral magnitude,
phase spectrum, etc. exhibit considerable changes
at an onset. Using a low-pass filtering technique,
the difference between the current frame and prior
frames of a detection function, which are exponen-
tially weighted, is calculated by

y(n) = F (n)−
A∑

a=1

F (n− a)

a
(3)

Where the onset detection functions are repre-
sented by F (n) and a represents the weighting
factor.

Melody detection: A polyphonic music signal’s
lead voice melody may be found by removing
the trend in the ZFR output of each note segment
adaptively using a mean subtraction window length
that corresponds to average pitch period of the
lead voice in the segment. As a final step, each
segmented note is subjected to Zero Frequency
Filtering with a trend elimination window based on
its average pitch period. In order to get the melody

Table 1: Dataset description.

Name Sample Rate (in
KHZ)

Number of clips

MIREX 2005 44.1 13

ADC 2004 44.1 20

IITKGP
HPMD

44.1 28

of the lead voice, the inverse of the difference
between consecutive GCI’s is calculated using the
note segments that represent the GCI’s.

2.2 Dataset:

The state-of-the-art to evaluating the melody of
an audio clip have been described in previous sec-
tion. In this part of article, we will cover datasets
that are used to analyze the aforementioned ap-
proaches. In the form of time–frequency pairings,
the datasets include music snippets as well as the
accompanying melodic ground truth. Specifically,
the ADC2004, Mirex05TrainFiles, and IITKGP
HPMD which each included 20, 13 and 28 excerpts,
were employed, respectively.

ADC 2004: This dataset contains four clips
from each of the following genres: pop, jazz, daisy,
opera, and MIDI (Musical Instrument Digital Inter-
face). This dataset comprises of twenty audio clips
were captured at a sample rate of 44,100 Hz for
about 20 seconds each using pulse code modulation
(16-bit) and a length of around 20s.

MIREX05: MIDI datasets with genres such as
rock, pop, jazz, and classical piano are the most
often utilised in melody extraction. This database
contains 20–30 s segments of single channel 16-bit
44,100 Hz sampling .

IITKGP HPMD: (Reddy and Rao, 2018)
Hindustani Classical Polyphonic Music recorded
by professional musicians, which are known as
IITKGP HPMD. The dataset contains 28 music
clips, each of which has an average length of 30
seconds and is performed by both male and female
musicians.

Table 1 lists all the datasets that were utilised in
the assessment process.

2.3 Performance measures:

In order to extract the melody, techniques must per-
form two objectives: first to estimate which part
of audio has melody and which part does not con-
tain melody (voicing detection) and secondly, to
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predict the proper predominant fundamental fre-
quency as melody (pitch estimation). A melody
extraction method usually outputs two columns,
the first with fixed interval timestamps generally of
10ms and with f0 values indicating the algorithm’s
pitch estimate for the melody at each timestamp in
the second column. Additionally, for each frame,
the algorithm specifies whether or not it believes
the melody is present or missing in that particu-
lar frame. For frames when the melody is judged
to be missing, this is usually expressed in a third
output column or by returning an f0 value with a
negative sign. It is possible for algorithms to re-
port a pitch label even in frames where algorithm
assume the pitch is missing i.e., unvoiced frames,
which is helpful for evaluating the performance of
the algorithm. The accuracy of a pitch estimation
algorithm may be evaluated independently of the
quality of its voice detection method in this way.
In another word, voicing detection mistakes do not
affect pitch estimation accuracy.
The output of an algorithm is compared with the
ground truth of an audio excerpt in order to assess
its performance for a particular audio clip. Ground
truth files are identical to output files, but they in-
clude the proper sequence of f0 values indicating
the melody of the audio clip. A monophonic pitch
tracker is used to create the ground truth on the
excerpt’s solo melody track. In other word, every
song we evaluate requires a multi track recording.
In order to evaluate an algorithm, it is necessary to
compare its output on a frame-by-frame basis to
the ground truth file supplied by the ground truth
file. The algorithm should report that it has identi-
fied the lack of melody in unvoiced frames in the
ground truth. It is anticipated that the method will
provide a frequency value that is identical to the
one found in the ground truth for voiced frames.
Some of the performance metrics frequently em-
ployed for melody extraction methods have been
addressed in this section.

We calculate five global metrics based on this
frame-by-frame comparison that evaluate various
elements of the algorithm’s performance for the
audio sample in the issue. These metrics were
introduced in MIREX 2005 and are now often used
to assess melody extraction methods.

The uni-dimensional estimated melodic pitch
frequency sequence and ground truth frequency
sequence, represented by the vectors f and F, re-
spectively (Kumar et al., 2020, 2019). The voicing

indication vector is denoted by the v, whose ith

element vi = 1 when the ith frame is judged to be
voiced (i.e., when a melody is present in the frame),
with matching ground truth values V for the other
elements in the vector. Unvoicing indications are
expressed by the notation v̄i = 1− vi.

Voice Recall (VR):The algorithm’s estimated
voiced frame ratio to the ground truth melodic
frame ratio. i.e., Frames that are really labeled
as melodic/melodic frame based on ground truth.

V R =

∑
i viVi∑
i vi

(4)

Voicing False Alarm (VFA): The ratio of
frames that were incorrectly assessed as melodic
frames by the algorithm to frames that were labeled
as non-melodic frames in ground truth.

V FA =

∑
i viv̄i∑
i v̄i

(5)

Raw Pitch Accuracy (RPA): The proportion of
properly pitched frames compared to frames that
are judged to be unpitched.

RPA =

∑
i viτ [ζ(fi)− ζ(Fi)]∑

i vi
(6)

where, threshold feature is describe by τ and can
be defined as:

τ [a] = { 1 if | a |< 500if | a |> 50 (7)

Function ζ maps a frequency (Hz) to a percep-
tually motivated axis in which each semitone is
split into a hundredth of a cent. A significant value
number of cents may be used to indicate frequency
over a reference frequency fref .

ζ(f) = 1200 log2(
f

fref
) (8)

Raw Chroma Accuracy (RCA): RCA works in
the same way as the RPA, except it doesn’t take into
account the octave mistake (a common error made
during melody extraction). i.e., The ground truth
and approximated f0 sequences are both assigned
to a single octave.

RCA =

∑
i viτ [⟨ζ(fi)− ζ(Fi)⟩12]∑

i vi
(9)
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Table 2: Evaluation result achieved by Melodia for
various testset.

Testset VR VFA RPA RCA OA
ADC 2004 0.83 0.18 0.64 0.80 0.74

MIREX05 0.76 0.24 0.57 0.70 0.61

IITKGP HPMD 0.77 0.27 0.75 0.86 0.76

Table 3: Evaluation result achieved by Time-Domain
AdaptiveFiltering-Based Method for various testset.

Testset VR VFA RPA RCA OA
ADC 2004 0.87 0.11 0.65 0.83 0.79

MIREX05 0.80 0.20 0.62 0.73 0.65

IITKGP HPMD 0.83 0.30 0.71 0.86 0.73

Where,

⟨a⟩12 = a− 12⌊ a

12
+ 0.5⌋ (10)

Overall Accuracy (OA): Overall Accuracy is
the percentage of frames properly identified with
both pitch and voicing based on the combination
of voicing detection and pitch estimation. In terms
of L, OA may be characterised as:

OA =
1

L

∑
i

Viτ [ζ(fi)− ζ(Fi)] + V̄iv̄i (11)

3 Result analysis

In this section we are comparing the result evalua-
tion for Melodia and time domain adaptive filtering
based model. In table 2 we can see the evaluation
metrices performed on the Melodia for melody ex-
traction and table 3 represents the result achieved
by the time domain adaptive filtering based model.
With the exception case of (VFA), which runs from
0 for best case to 1 for worst case scenarios, and
all other measures range from worst (0) to best (1).
The algorithm’s efficiency is calculated by aver-
aging the evaluation score of all music excerpts
for the measure in consideration across the entire
music dataset.

For analysis of these models lets check for its
best possible outcome. Assuming that we have a
flawless contour filtering strategy, we run tests to
evaluate the best possible outcome our state-of-the-
art algorithm could obtain. Taking a look at the
findings that our system produced, we can make
some observations. The total accuracy of the ideal
contour filtering simulation, for starters, is less than

Figure 3: Performance comparison of Melodia and time
domain adaptive filtering model over various test set.
(a) Voicing Recall(VR) for Melodia and time domain
adaptive filtering model. (b) Voicing False Alarm (VFA)
for Melodia and time domain adaptive filtering model.
(c) Raw Pitch Accuracy (RPA) for Melodia and time
domain adaptive filtering model. (d) Overall Accuracy
(OA) for Melodia and time domain adaptive filtering
model.

one hundred percent, as shown in table. When com-
paring the datasets ADC2004 and Mirex05, we
can see in Fig. 3, that the adaptive filtering based
technique performs much better than Melodia in
terms of RPA and OA. TWM is able to provide a
resonance frequency that falls inside the ZFF’s in-
variance range because of the predominance of the
voices. On the IITKGP HPMD dataset, the time
domain adaptive filtering technique achieves RP
and OA results that are equivalent to those obtained
with the Melodia method. It follows from this that
the adaptive filtering based technique works better
when dealing with music signals that have a high
concentration of voices. Furthermore, owing to
the impulsive nature of the percussion instrument’s
source, ZFF was unable to extract the proper GCI
placements of the voices. In the datasets ADC2004,
Mirex05, and IITKGP HPMD, an overall increases
for adaptive model in VR is found, which may be
ascribed to the broad dynamic range of the SoE
contour used for threshold. SoE and misclassi-
fication of non-vocals into vocals have grown in
IITKGP HPMD owing to the frequent stimulation
of the Tabla, as well as the Drum, which causes an
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increase in VFA performance.

4 Conclusion

For the purpose of automatically extracting the pri-
mary melody from a polyphonic piece of music,
we investigated the performance of Melodia and
a time domain adaptive filtering based model in
this study. In Melodia, pitch contours were formed
by combining the melodic pitch candidates that
were obtained via various signal processing proce-
dures. It is possible to identify melodic and non-
melody contours by analysing these pitch contours
and their distributions. In time domain adaptive
filtering model, The ZFF’s bandpass filtering prop-
erties are taken advantage of to create a hybrid
time- and frequency-domain melody extraction ap-
proach. In polyphonic music, the SoE contour is
thresholded to discern vocal and non-vocal parts.
The note segment sequence is produced by sens-
ing their frequency onsets. TWM method obtains
the mean subtraction filter resonance frequency.
Finally, the melody contour is retrieved by time-
domain adaptive zero-frequency filtering each note
segment. When using this approach, the lowered
results are mostly due to the mean subtraction win-
dow length being identified often outside of the
invariance range.
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