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Preface

Speech and music are two prominent research areas in the domain of audio signal processing. With
recent advancements in speech and music technology, the area has grown manifolds, bringing together
the interdisciplinary researchers of computer science, musicology and speech analysis. The languages
we speak propagate as sound wave through various media and allow communication or entertainment
for us, humans. The music we hear or create can be perceived in different aspects as rhythm, melody,
harmony, timbre, or mood. The multifaceted nature of speech or music information requires algorithms,
systems using sophisticated signal processing, and machine learning techniques to better extract useful
information. This workshop will provide both profound technological knowledge and a comprehensive
treatment of essential topics in speech and music processing.

Recent computational advancement has opened up several avenues to explore further the domain of
speech and music. A deep understanding of both speech and music in terms of perception, emotion,
mood, gesture and cognition is in the forefront, and many researchers are working in these domains.
In this digital age, overwhelming data have been generated across the world that requires efficient
processing for better maintenance, retrieval, indexing and querying. Machine learning and artificial
intelligence are most suited for these computational tasks.

The SMP-2021 workshop was organized with the following objects: (i) to bring researchers and
developers together who work on speech and music domain. (ii) to provide a platform for researchers to
discuss speech prosody, Indian as well as western music and (iii) to encourage researchers to collaborate
and create more annotated resources.

Technical Session:
The SMP-2021 workshop received nine submissions by authors from India, China, Canada, and Ireland.
Each paper was reviewed by 2-3 experts. Based on reviewers’ comments, six papers were accepted for
presentation at the workshop. However, five papers were presented during the workshop session.

The accepted and presented papers include a variety of topics from both speech and music processing
domains. Two papers covered speech emotion recognition in multimodal context and speech prosody in
Hindi language. While three papers covered music, out of which two papers presented language, artist
and melody identification from Indian classical music and one paper discussed about Dorabella Cipher
as western music context.
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Music Processing 2021 (SMP2021). Specifically, the ICON-2021organizers and the technical program
committee members need for the workshop facilitation and support in reviewing papers, respectively.
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Abstract 

Deep learning methods are being applied 
to several speech processing problems in 
recent years. In the present work, we have 
explored different deep learning models 
for speech emotion recognition. We have 
employed normal deep feed-forward 
neural network (FFNN) and convolutional 
neural network (CNN) to classify audio 
files according to their emotional content. 
Comparative study indicates that CNN 
model outperforms FFNN in case of 
emotions as well as gender classification. 
It was observed that the sole audio based 
models can capture the emotions up to a 
certain limit. Thus, we attempted a multi-
modal framework by combining the 
benefits of the audio and text features and 
employed them into a recurrent encoder. 
Finally, the audio and text encoders are 
merged to provide the desired impact on 
various datasets. In addition, a database 
consists of emotional utterances of several 
words has also been developed as a part of 
this work. It contains same word in 
different emotional utterances. Though the 
size of the database is not that large but 
this database is ideally supposed to contain 
all the English words that exist in an 
English dictionary. 

1 Introduction 

Human Computer Interaction (HCI) researches 
the way we humans interact with a computer in 
order to improve the existing technologies. Thus, 
Automatic Speech Recognition (ASR) has been 
an active field of AI research aiming to generate 
machines that communicate with people via 
speech [1] [2]. In recent trends, simple text based 
chatbot systems are adding extra flavor of 

personalized experiences to their users through 
speech interactions. However, emotions always 
play the important roles in our interactions with 
people and computers. Fundamental publications 
of Rosalind Picard on affective computing 
increased the awareness in HCI community 
regarding important roles of emotion [3] [4] [5] 
[6]. Since then, researchers have also become 
increasingly aware of the importance of emotion 
in the design process [7]. 

Speech Emotion Recognition (SER) is 
mostly beneficial for commercial HCI 
applications, such as speech synthesis, customer 
service, education, forensics and medical 
analysis. Emotion recognition is used in call 
center for classifying calls according to emotions 
[8] and it serves as the performance parameter for 
conversational analysis [9], customer satisfaction 
and so on. SER is also used in automotive 
industry especially in car board system based on 
mental state of the driver to initiate his/her safety 
by preventing accidents to happen [10]. 

Affective computing and HCI research 
used to target in reducing user frustration, 
building tools to support development of socio-
emotional skills [11]. Without information about 
emotions, it is difficult to achieve a harmonic and 
natural man-machine interface for applications 
such as patient care, geriatric nursing, call 
centers, psychological consultation, and human 
communication [12]. Therefore, health care 
industry is becoming prominent because it 
leverages emotion recognition techniques to 
solve complex patient related problems.  

Speech is an information-rich signal that 
contains paralinguistic information as well as 
linguistic information. As a result of this, speech 
conveys more emotional information than text. 
This reality motivates many researchers to 
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consider speech signal as a quick, effective and 
natural process to identify interaction mysteries 
between computer and human. Although, there is 
a significant improvement in speech recognition 
but still researchers are away from natural 
interplay between computer and human, since 
computer is not capable of understanding human 
emotional state. The recognition of emotional 
speech aims to recognize the emotional condition 
of individual utterances by applying his/her voice 
automatically. Recognizing of emotional 
conditions in speech signals are so challenging 
area for several reasons. 

Majority of the speech emotional 
methods used to select the best features that are 
powerful enough to distinguish between different 
emotions. 

The presence of various languages, 
accents, sentences, speaking styles, speakers also 
adds another difficulty because these 
characteristics directly change most of the 
extracted features including pitch and energy 
[13]. 

Furthermore, it is possible to have a 
more than one specific emotion at a time in the 
same speech signal and each emotion may 
correlate with a different part of speech signals. 
Therefore, defining the boundaries between parts 
of emotion is very challenging task. 
In the present task with respect to speech emotion 
recognition, we have proposed two systems based 
on deep learning method to classify a speech 
signal according to its emotional content. 

1. The first model is based on simple 
deep Feed-Forward Neural Network (FFNN). As 
it is a very basic model, it was unable to 
recognize enough important features from speech 
signal to classify it accurately. The overall 
accuracy that we achieved from this system is 
only 40%. 

2. The second model is based on 
Convolutional Neural Network (CNN) model. 
Our main contribution lies in the way we applied 
the CNN model to our dataset. In several studies, 
it is observed that CNN have been used to 
classify speech emotion but the CNN model was 
applied on the spectrogram image which is a 
visual representation of the spectrum of 
frequencies of an audio signal. In contrast, we 
have applied our CNN model on the array of low-
level MFCC features, extracted from the 
spectrogram image of an audio signal. Due to this 

fact, we used 1- Dimensional Convolutional 
layers in our CNN and not 2-Dimensional ones, 
which are generally used on image data. The 
overall accuracy we achieved from this model is 
65%. 

Now apart from these two systems, we 
have also developed an emotional lexicon that 
contains utterances of words along with their 
emotional class. Moreover, the lexicon also 
contains the utterances of a particular word when 
belongs to one or more emotion categories (same 
word can belong to multiple categories of 
emotion).  
Finally, we introduce a deep recurrent encoder 
model that exploits text data and audio signals 
both simultaneously to obtain a better 
understanding of the emotional aspects in speech 
signals. In real world, a multi-modal dialogue 
system is composed of sound and spoken content. 
This actually motivated us to build a system 
which can encode the information from audio and 
text sequences and then can combine the 
information from these sources to predict the 
emotion class. Our system reported accuracies 
ranging from 62.7% to 70.8% when it was 
applied to the IEMOCAP dataset. 

The rest of the paper is organized as follows. 
Section 2 describes the related attempts carried 
out under speech emotion recognition. The 
details on two types of emotional speech datasets 
along with two different models for speech 
emotion classification are discussed in Section 3. 
Section 4 describes a deep learning based multi-
modal framework that takes into account the 
roles of speech and text in order to develop an 
improved system. Experiments and associated 
results with respect to all the models and 
framework are explained in Section 5. Finally, 
Section 6 briefs the process of developing speech 
emotion lexicon as an outcome whereas the 
concluding remarks are made in Section 7. 

2 Related Work 

If we observe a comprehensive review of speech 
emotion recognition systems targeting pattern 
recognition researchers who do not necessarily 
have a deep background in speech analysis, we 
notice three main aspects of this research field: 
(1) important design criteria of emotional speech 
corpora, (2) impact of speech features on the 
classification performance of SER and (3) 
classification systems employed in SER.  
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L. Chen et al. [15] used multi-level SVM 
classifier and ANN to reduce dimensionality by 
employing several parmeters (e.g., energy, ZCR, 
pitch, SC,  spectrum cut-off frequency, 
correlation density (Cd), fractal dimension, MFF 
etc.) and obtained 86.5%,  68.5% and 50.2% 
recognition rates at different levels on Beihang 
University Database of Emotional Speech 
(BHUDES). Similarly, the authors in [16] used 
binary classifier and QDC with prosodic and 
contour features to obtain 75.8% rate of 
recognition on SEMAINE functional data. In 
recent trends, H. Cao et al. [14] used SVM with 
prosodic and spectral features and obtained 
44.4% recognition rate on Berlin & LDC & FAU 
Aibo dataset.  

In addition to the above mentioned works, in 
[17], a novel Modulation Spectral Features 
(MSFs) for the recognition of human emotions in 
speech is presented. An auditory-inspired ST 
representation is acquired by deploying an 
auditory filter bank as well as a modulation filter 
bank, to perform spectral decomposition in the 
conventional acoustic frequency domain and in 
the modulation frequency domain, respectively 

This authors in [18] focused on the data pre-
processing techniques which aim to extract the 
most effective acoustic features to improve the 
performance of the emotion recognition. The 
technique can be applied on a small sized data 
set with a high number of features. The 
presented algorithm integrates the advantages 
from a decision tree method and the random 
forest ensemble. Experiment results on a series 
of Chinese emotional speech data sets indicate 
that the presented algorithm can achieve 
improved results on emotional recognition, and 
outperform the commonly used Principle 
Component Analysis (PCA) / Multi-Dimensional 
Scaling (MDS) methods, and the more recently 
developed ISO-Map dimensionality reduction 
method. 

In [19], a fusion-based approach to emotion 
recognition of affective speech using multiple 
classifiers with acoustic-prosodic information 
(AP) and semantic labels (SLs) is presented. The 
acoustic-prosodic information was adopted for 
emotion recognition using multiple classifiers 
and the MDT was used to select an appropriate 
classifier to output the recognition confidence.  
It is observed that all the above mentioned 
approaches are either tried to deal with signals, 
acoustic features or to use machine learning 
classifiers and feature reduction techniques to 
improve the performance of SER. In contrast, 

our proposed method is based on deep learning 
and applied on three different datasets to show 
the effectiveness. In addition, the multi-modal 
framework deals with both the texts and speech 
together to capture the insights under the deep 
learning umbrella. The development of speech 
emotion lexicon directs us the utilization of the 
proposed models. 

3 Speech Emotion Recognition 

A single word can be associated with multiple 
emotions [20]. Based on this hypothesis, we have 
built our emotion classifier and chosen datasets 
carefully. Although there are several other 
modalities such as facial expression, body 
language, through which emotions can be 
expressed but we limited our present study to 
speech modality only. Speech emotion corpora 
that were prepared by actors have been used in the 
current study because the emotions expressed 
with exaggeration potentially compensate the lack 
of information provided by other modalities. This 
also allows us to explore the effectiveness of deep 
learning models with greater control compared 
with daily-life utterances. However, we limited 
our model to classify emotions for ‘English’ 
language only. 

 
3.1   Speech Emotion Corpora 
 
SAVEE: British English Database: The Surrey 
Audio-Visual Expressed Emotion (SAVEE) 
database was recorded from four native English 
male speakers (identified as DC, JE, JK and KL), 
postgraduate students and researchers at the 
University of Surrey aged from 27 to 31 years. 
Emotion has been described psychologically in 
discrete categories: anger, disgust, fear, happiness, 
sadness and surprise [21]. This is supported by the 
cross-cultural studies of Ekman [22] and studies 
of automatic emotion recognition tended to focus 
on recognizing these [23]. We added the class 
neutral to provide recordings of 7 emotion 
categories. The text material consisted of 15 
sentences per emotion: 3 common among all 
emotions, 2 emotion-specific and 10 generic 
sentences that were different for each emotion and 
phonetically-balanced. The sampling rate of all 
recordings was 44.1 kHz. The 3 common and 2 × 
6 = 12 emotion-specific sentences were recorded 
as neutral to give 30 neutral sentences. This 
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resulted in a total of 120 utterances per speaker, 
for example:  

Common: She had your dark suit in greasy 
wash water all year. 

Anger: Who authorized the unlimited expense 
account? 

Disgust: Please take this dirty table cloth to the 
cleaners for me. 

Fear: Call an ambulance for medical 
assistance. 

Happiness: Those musicians harmonize 
marvelously. 

Sadness: The prospect of cutting back spending 
is an unpleasant one for any governor. 

Surprise: The carpet cleaners shampooed our 
oriental rug. 

Neutral: The best way to learn is to solve extra 
problems. 

 
RAVDESS: Emotional Speech and Song 

Database: The corpus, Ryerson Audio-Visual 
Database of Emotional Speech and Song 
(RAVDESS) [24] contains 7356 files (total size: 
24.8 GB). The database contains 24 professional 
actors (12 male, 12 female), vocalizing two 
lexically-matched statements in a neutral North 
American accent. Speech includes calm, happy, 
sad, angry, fearful, surprise and disgust 
expressions whereas song contains calm, happy, 
sad, angry and fearful emotions. The statements 
are “Kids are talking by the door” and “Dogs are 
sitting by the door”. Each expression is produced 
at two levels of emotional intensity (normal and 
strong) with an additional neutral expression. All 
conditions are available in three modality formats: 
Audio-only (16bit, 48kHz .wav), Audio-Video 
(720p H.264, AAC 48kHz, .mp4), and Video-only 
(no sound). We used only the audio modality as 
our focus was on the recognition of emotion from 
speech. Speech file (size 215 MB) contains 1440 
files: 60 trials per actor x 24 actors = 1440. 

 
3.2   Data Cleaning and Pre-processing  
 
In order to have a consistent sampling rate across 
all databases, all utterances were resampled and 
filtered by an antialiasing FIR low pass filter to 
have frequency rate of 44.1 kHz prior to any 
processing. All audio utterances were then 
converted into spectrograms. A spectrogram is an 
image that displays the variation of energy at 
different frequencies across time. There are two 

general types of spectrograms: wide-band and 
narrow-band spectrograms. Wide-band 
spectrograms have higher time resolution than 
narrow-band spectrograms. This property enables 
the wide-band spectrograms to show individual 
glottal pulses. In contrast, narrow-band 
spectrograms have higher frequency resolution 
than wide-band spectrograms. This feature 
enables the narrow-band spectrograms to resolve 
individual harmonics. Considering the importance 
of vocal fold vibration, along with the fact that 
glottal pulse is associated with one period of vocal 
fold vibration, we decided to convert all 
utterances into wide-band spectrograms. 

 
3.3 Model 1: Feed Forward Neural 
Network (FFNN) 
 
Deep feed-forward neural network constitutes 
several layers of hidden neurons, where each 
neuron is connected to every neuron in its 
previous layer. The first layer is called input layer. 
For our study, the input layer consists of 216 
MFCC features extracted from the audio data and 
the batch size has been set to 16. Thus, the 
dimension of our input data is (16 X 216). We 
employed three hidden layers in our architecture 
as depicted in Figure 1. The number of neurons in 
the first, second and third hidden layer are 256, 
512 and 256, respectively. We have used the 
Rectified Linear Unit (ReLU) activation function 
in all of the three hidden layers to achieve non-
linearity. Only in the output layer, softmax 
activation function is used as it gives the 
probability distribution across 10 output classes. 
As the problem is a classification problem, we 
have used the cross-entropy loss. Adam optimizer 
is also employed to minimize the loss function 
across the training data. We have also employed a 
dropout rate of 20% after every hidden layer. The 
dropout layers are employed to reduce the over-
fitting problem. 
 
 
 
 
 
 
 
 
 

Figure 1: Baseline architecture of FFNN 
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3.4 Model 2: Convolutional Neural Network 
(CNN) 
We have applied Convolutional Neural Network 
algorithm on audio data. As the data is of one-
dimensional, we cannot use the conventional 
CNN architecture used for image data in general. 
As a result, we used 1-D convolutional layers 
instead of the most popular 2-D convolutional 
layers. All other layers like max-pooling and 
dense layers are used as it is. The convolutional 
neural network (CNN) architecture that has been 
implemented in the current study constitutes two 
convolutional layers and two fully connected 
layer, also known as dense layers. Among the two 
dense layers, the first one has 128 hidden neurons 
and the second one has 256 hidden neurons. For 
the current study, we tried to classify each audio 
file to a particular emotion class among 5 emotion 
classes and also to classify the gender of the 
voice. Thus, we have 10 (5 emotions X 2 genders) 
output classes. As a result we added 10 softmax 
units in our last (output) layer to estimate the 
probability distribution of the classes.  

In our architecture, every convolutional layer 
is followed by a max-pooling layer. Each of the 
first and second convolutional layers is followed 
by a 1-D max-pooling layer with max-pooling 
window size of 7 and 4, respectively. The number 
of kernels (filters) is set to 64 and 128 for the first 
and second convolutional layers, respectively. The 
sizes of the kernels that have been applied to the 
first and second convolutional layers are 5 and 3, 
respectively. Batch size of 16 is applied 
throughout the training process. Rectified Linear 
Units (ReLU) were used in convolutional layers 
and fully connected layers, except in the last 
dense layer, as activation functions to introduce 
non-linearity to the model. Similar to Model 1, as 
the problem is a classification problem, we have 
used the cross-entropy loss and adam optimizer. 
The number of epochs is set to 100. The training 
procedure for this study was performed entirely 
on a CPU-based system, no GPU has been used 
for conducting any part of the training process. 
We have also used dropout and flatten function. 
Flatten function is used whenever we needed to 
reduce the dimension of the data which was 
output by a layer in the network whereas dropout 
layer is used to reduce the over-fitting issue 
during training process. Dropout layers reduce 
over-fitting by dropping out or ignoring some of 
the neurons. We have used two dropout layers in 

our network architecture with each of them 
residing right after each of the two dense layers. A 
dropout rate of 20% has been used in both of the 
two cases. Figure 2 gives a detailed overview of 
the network with the input and output dimensions 
of data in each of the layer in the network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Baseline architecture of CNN. 

4 Multi-Modal Analysis 

Recently, we agree that the deep learning 
algorithms have successfully addressed problems 
in various fields, such as image classification, 
machine translation, speech recognition, text-to-
speech generation and other machine learning 
related areas [30] [31] [32]. Similarly, substantial 
improvements in performance have been obtained 
when deep learning algorithms have been applied 
to statistical speech processing [28]. Even though 
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various types of deep learning methods have been 
applied, this problem is still considered to be 
challenging for several reasons; first, the scarcity 
of emotion tagged data for training deep neural 
models and second, the characteristics of 
emotions must be learned from low-level speech 
signals. However, feature-based models display 
limited skills when applied to this problem. 
 

 
 
Figure 3: Multi-modal architecture of Audio (non-
Linguistic) and Text (linguistic) models for speech emotion 
classification 

In order to overcome these limitations, we have 
developed a model (as shown in Figure 3) that 
uses high-level text transcription, as well as low-
level audio signals, to utilize the information 
contained within low-resource datasets to a 
greater degree. The emotional content of speech is 
clearly indicated by the emotion words contained 
in a sentence [29], such as “lovely” and 
“fantastic,” which carry strong emotions 
compared to generic (non-emotion) words, such 
as “person” and “day.” Thus, we hypothesize that 
the speech emotion recognition model will be 
benefit from the incorporation of high-level 
textual input with the low-level audio features. 
Moreover, this multimodal approach encodes both 
audio and textual information simultaneously via 
a dual recurrent encoder. 

 
4.1   Audio-Only Encoder (AoE) 
 
We have built an Audio-only Encoder (AoE) to 
predict the emotional class of a given audio signal 
based on only audio features. Once Mel-
frequency cepstral coefficients (MFCCs) features 
have been extracted from an audio signal, a subset 
of the sequential features is fed into the recurrent 
neural networks (RNN), which is composed of 
gated recurrent units (GRUs), which in turn leads 
to the formation of the network’s internal hidden 

state ht to model the time series pattern. The 
updates of the hidden state is performed with the 
input data xt and the hidden state output of the 
previous time step ht-1, which is basically the main 
working principle of a recurrent neural network. 
The present time hidden state ht can be 
mathematically modeled as following: 

ht = fw (ht-1, xt),                               (1) 

where fw is a function which imitates the 
function of an RNN with weight parameter w, ht 
represents the hidden state at tth time step, and xt 
represents the tth MFCC features in x ={x1: ta }. 
After encoding the audio signal x with the RNN, 
the last hidden state of the RNN, hta, is 
considered to be the representative vector that 
contains all of the sequential audio data. In this 
model, we have also incorporated the prosody 
features of an audio signal. The prosody of an 
audio signal is characterized by the inherent 
pattern of stress and intonation in a language. 
We have incorporated this characteristic in order 
to better classify the emotional content in an 
audio signal.  

However, in order to implement, we 
have developed a prosodic feature vector, p, 
which models the prosody of audio files. Then, 
we have concatenated the last hidden state 
vector, hta, with the prosodic feature vector, p, in 
order to generate more informative vector 
representation of the audio signal. We denote 
this more informative vector as e, where e = 
concat{hta, p}. The MFCC and the prosodic 
features are extracted from the audio signal using 
the openSMILE toolkit [26] and xt has 39 and p 
has 35 MFCC features. 

Finally, the emotion class is predicted by 
applying the softmax function to the vector e. For 
a given audio sample i, we assume that yi is the 
true label vector, which contains all zeros but 
contains a one at the correct class, and 풚풊 is the 
predicted probability distribution from the 
softmax layer. The training objective then takes 
the following form:  

풚풊  = 풆푻푴 +  풃                  (2) 

휕 =  −푙표푔 . 푦 , 푙표푔  (풚풊,풄) 
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where, e is the calculated representative vector of 
the audio signal with dimensionality e ∈ Rd . The 
M ∈ Rd x C and the bias b are learned model 
parameters, C is the total number of classes, and 
N is the total number of samples used in training. 

4.2   Text-Only Encoder (ToE) 
 
Apart from the audio, we tried to use the textual 
information as another modality in predicting the 
emotion class of a given signal. To use textual 
information, the speech transcripts are tokenized 
and indexed into a sequence of tokens using the 
Natural Language Toolkit (NLTK) [27]. Each 
token is then passed through a word embedding 
layer that converts a word index to a 
corresponding 300-dimensional vector that 
contains additional contextual meaning between 
words. The sequence of embedded tokens is fed 
into a Text-only Encoder (ToE) in such a way that 
the audio MFCC features are encoded using the 
AoE represented by equation 1. In this case, xt is 
the tth embedded token from the text input. 
Finally, the emotion class is predicted from the 
last hidden state of the text-RNN using the 
softmax function. We use here the same training 
objective as we adopted for the AoE model, and 
the predicted probability distribution for the target 
class is as follows: 

풚풊  = 푠표푓푡푚푎푥 (풉풍풂풔풕
푻푴 +  풃 )                   (3) 

where  hlast is the last hidden state of the text-
RNN, hlast ∈ Rd, and M ∈ Rd x C and the bias b 
are learned model parameters. The lower part of 
Figure 3 and Figure 4 indicates the architecture 
of the ToE model.  

4.3 Merged Recurrent Encoder (MRE) 
  

In order to obtain the benefits from both the 
audio and text modes, we present an architecture 
called the merged recurrent encoder (MRE) to 
overcome the limitations of existing approaches. 
In this study, we consider multiple modalities, 
such as MFCC features, prosodic features and 
transcripts, which contain sequential audio 
information, statistical audio information and 
textual information, respectively. These types of 
data are the same as those used in the AoE and 
ToE cases.  

However, the MRE model employs two 
RNNs to encode data from the audio signal and 

textual inputs, independently. The audio-RNN 
encodes MFCC features from the audio signal 
using equation 1. The last hidden state of the 
audio-RNN is concatenated with the prosodic 
features to form the final vector representation e, 
and this vector is then passed through a fully 
connected neural network layer to form the audio 
encoding vector A. On the other hand, the text-
RNN encodes the word sequence of the 
transcript using equation 1. The final hidden 
states of the text-RNN are also passed through 
another fully connected neural network layer to 
form a textual encoding vector T. Finally, the 
emotion class is predicted by applying the 
softmax function to the concatenation of the 
vectors A and T. We use the same training 
objective as the AoE model, and the predicted 
probability distribution for the target class is as 
follows: 

A = gɵ(e) , T = g′ɵ(hlast) 

풚풊  = 푠표푓푡푚푎푥 (푐표푛푐푎푡 (푨,푻)푻푴 +  풃 )       (4) 

where gɵ , g′ɵ is the feed-forward neural 
network with weight parameter θ, and A, T are 
final encoding vectors from the audio-RNN and 
text-RNN, respectively. M ∈ Rd x C and the bias b 
are learned model parameters. 
 

 
 

 
 

 
 
Figure 4: Merged Recurrent Encoder. (The upper part 

shows AoE, which encodes audio signals and the lower part 
shows ToE, which encodes textual information). 
.   
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Dataset: We evaluated our multi-modal model on 
the Interactive Emotional Dyadic Motion Capture 
(IEMOCAP) [34] dataset. This dataset was 
collected theatrical theory in order to simulate 
natural dyadic interactions between actors. We use 
categorical evaluations with majority agreement. 
We use only four emotional categories viz. happy, 
sad, angry, and neutral to compare the 
performance of our model with other research 
using the same categories. The IEMOCAP dataset 
includes five sessions, and each session contains 
utterances from two speakers (one male and one 
female). This data collection process resulted in 
10 unique speakers. For consistent comparison 
with previous work, we merge the excitement 
dataset with the happiness dataset. The final 
dataset contains a total of 5531 utterances (1636 
happy, 1084 sad, 1103 angry and 1708 neutral). 
 
Feature Extraction: In order to extract speech 
information from audio signals, we use MFCC 
values, which are widely used in analyzing audio 
signals. The MFCC feature set contains a total of 
39 features, which include 12 MFCC parameters 
(1-12) from the 26 Melfrequency bands and log-
energy parameters, 13 delta and 13 acceleration 
coefficients. The frame size is set to 25 ms at a 
rate of 10 ms with the Hamming function. 
According to the length of each wave file, the 
sequential step of the MFCC features is varied. To 
extract additional information from the data, we 
also use prosodic features, which show 
effectiveness in affective computing. The prosodic 
features are composed of 35 features, which 
include the F0 frequency, the voicing probability, 
and the loudness contours. All of these MFCC and 
prosodic features are extracted from the data 
using the OpenSMILE toolkit [26]. 
 
Setup Details: Among the variants of the RNN 
function, we use GRUs as they yield comparable 
performance to that of the LSTM and include a 
smaller number of weight parameters [28]. We 
use a max encoder step of 750 for the audio input, 
based on the implementation choices presented in 
[33] and 128 for the text input because it covers 
the maximum length of the transcripts. The 
vocabulary size of the dataset is 3,747, including 
the “_UNK_” token, which represents unknown 
words, and the “_PAD_” token, which is used to 
indicate padding information added while 

preparing mini-batch data. The number of hidden 
units and the number of layers in the RNN for 
each model (AoE, ToE, MRE) are selected based 
on extensive hyper-parameter tuning. 

5 Experiments & Results 

This section discusses the experiments 
performed in this study to classify emotion class 
and gender of the input audio data using the 
FFNN and CNN based deep learning models as 
described in the above sections. In order to have 
a comparative discussion, we restricted ourselves 
to 100 epochs for both the models.  

The datasets used to train both of these 
networks already have been discussed in the 
Section 3.1. We encourage the readers to consult 
that section to have a detailed idea about the 
datasets. We have merged the audio files from 
the two datasets, SAVEE and RAVDESS, to 
produce the raw data. There are approximately 
1900 audio files after merging. However, we 
were not able to use all the audio files to train 
our networks as the emotion classes of the two 
datasets were not identical. The emotion classes 
reported in SAVEE database are anger, disgust, 
fear, happiness, sadness, surprise and neutral 
whereas the emotion classes in RAVDESS 
database are neutral, calm, happy, sad, angry, 
fearful, disgust and surprised. 

As we know neutral emotion does not 
specifically portray any emotion specific feature, 
we discarded all the sentences belong to neutral 
class from our raw dataset. Furthermore, we 
considered only 5 main classes of emotions 
namely, calm, happiness, sadness, fear and 
anger. As a result, we have approximately 1200 
sentences in our raw database. In case of training 
and testing our models, we need to split our raw 
dataset, which is described in the previous 
section, to form the training and test data. We 
have taken approximately 80% of the raw dataset 
as training and the remaining 20% as test data to 
evaluate our models. The performances of the 
neural network models on this training and test 
set have been demonstrated in the following 
sections. 
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5.1   Results of FNNN Model 
 
The performance of the deep Feed Forward 
Neural Network is measured in terms of training 
vs. test accuracy graph, training vs. test loss 
graph and two confusion matrices, one for 
emotion classification and another for gender 
classification. 
 

 
 
 
 
 
 

Figure 5: Training vs. Test Loss and Training vs. Test 
Accuracy graph for FFNN model. 

It is very much clear from the above graphs in 
Figure 5 that the model did not perform very 
well; in fact it is very clear that over-fitting 
happened in this case. In order to investigate the 
reasons, we reported the confusion matrices. 
Figure 6 represents the overall confusion matrix 
for FFNN model.  

 

 

 

 

 

 

 

 
Figure 6: Confusion matrix for Emotion and Gender 
classification using FFNN  

If we analyze the confusion matrix, we can 
conclude that the overall performance of the 
FFNN model is not good. We can see in the 
confusion matrix that male_fearful, male_happy, 
male_sad have been misclassified as 
male_angry. In addition, a considerable amount 
of female_sad and male_sad labels have been 
misclassified as female_happy and male_fearful, 
respectively. Overall, the accuracy achieved by 
this model is 40.82%. Figure 7 represents the 
confusion matrix only for gender labels that is 
male and female. The classification performed 

by this model for gender labels is far better than 
overall classification.  

 
 
 
 
 
 
 

Figure 7: Confusion matrix for Gender classification (Only) 
using FFNN model. 

 
5.2    Results of CNN Model 

 
Unlike the FFNN model, CNN model did not 
suffer from over-fitting as can be seen in Figure 8. 
On the other hand, Figure 9 and Figure 10 
represent the confusion matrices for overall 
classification and gender classification, 
respectively. If we analyze the confusion matrix 
for the overall classification, it surely outperforms 
our FFNN model as the misclassification rate is 
much lower in the case of CNN. Misclassification 
of female_fearful as female_sad is the only 
noticeable misclassification that happened in the 
whole confusion matrix. The accuracy for the 
overall classification is approximately 68.38%. 
This accuracy was achieved by running the 
training algorithm for 2000 epochs 
 
 
 
 
 
 
 
 
Figure 8: Training vs. Test Loss and Training vs. Test 
Accuracy graph for CNN model 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Confusion matrix for Emotion and Gender 
classification using CNN. 
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Figure 10: Confusion matrix for Gender classification using 
CNN model. 

5.3    Results of Multi-Modal Model 
 
The MRE model combines the benefits of AoE 
and ToE models and it receives approval if we see 
the curves of loss as well as accuracies over 
training and validation set, respectively. 
Moreover, the performances of individual models 
justify the multi-modal effects when used in 
combination. Table 1 shows the accuracies of 
various models. 
 

 
 

 
 
Figure 11: Loss and accuracy curves for AoE model with 
(8:0.5:1.5) splitting into training, development and test data 

 

 

 
 
Figure 12: Loss and accuracy curves for ToE model with 
(8:0.5:1.5) splitting into training, development and test data 
 
 

Model  
 

Accuracy  
on Validation Set 

Accuracy 
on Test Set 

Model 1 (FFNN)  43.02%  40.82% 
Model 2 (CNN)  64%-68.38%  52%-54.32% 
Model 3.1 (AoE)  59.42%  59.5% 
Model 3.2 (ToE)  63.58%  67.27% 
Model 3.3 (MRE)  74.12%  74.64% 

Table 1: Comparative analysis of accuracies of the various 
models on validation and test sets of IEMOCAP data. 

 
Figure 13: Loss and accuracy curves for MRE model with 
(8:0.5:1.5) splitting into training, development and test data 

5.4   Error Analysis 
 

We analyze the predictions of the AoE, ToE, and 
MRE models. Figure 14 shows the confusion 
matrix of each model. The ARE model (as 
shown in Figure 14(a)) incorrectly classifies 
most instances of happy as neutral (43.51%); 
thus, it shows reduced accuracy (35.15%) in 
predicting the happy class. Overall, most of the 
emotion classes are frequently confused with the 
neutral class. This observation is in line with the 
findings of [25], who noted that the neutral class 
is located in the center of the activation-valence 
space, complicating its discrimination from the 
other classes.  

Interestingly, the ToE model (as shown in 
Figure 14(b)) shows gains in predicting the 
happy class when compared to the AoE model 
(35.15% to 75.73%). This result seems plausible 
because the model can benefit from the 
differences among the distributions of words in 
happy and neutral expressions, which gives 
more emotional information to the model than 
that of the audio signal data. On the other hand, 
it is unexpected that the ToE model incorrectly 
predicts instances of the sad class as the happy 
class 16.20% of the time, even though these 
emotional states are being present at oppose to 
one another.  

The MRE model (as shown in Figure 14(c)) 
compensates for the weaknesses of the previous 
two models (AoE and ToE) and benefits from 
their strengths to a surprising degree. The values 

10



 

arranged along the diagonal axis show that all of 
the accuracies of the correctly predicted class 
have increased. Furthermore, the occurrence of 
the incorrect “sad-to-happy” cases in the ToE 
model is reduced from 16.20% to 9.15%. 

 

 
Figure 14: Confusion matrices of AoE, ToE and MRE 
models 

6 Speech Emotion Lexicon  

Not only the classification of speeches into 
different emotion categories, but one of our partial 
objectives was also to explore the possibility of 
generating a speech emotional database consisting 
of emotional utterances also. Therefore, we have 
developed a speech emotion lexicon containing 
utterances of different emotional categories. 
However, it is difficult to simultaneously generate 
both male and female voices in a text-to-speech 
system and thus, we limited ourselves to 
synthesize only ‘male’ voice in this present 
attempt.  For this very reason, we selected our 
dataset with only male speakers 
 
6.1   Pre-Processing 
 
All audio i.e. our WAV files were resampled and 
filtered by an antialiasing FIR low pass filter to 
have frequency rate of 44.1 kHz prior to any 
processing. Silences and non-voiced parts at the 
start and the end have been removed from the 
files. The next step of developing the speech 
lexicon is to classify the emotion of each of the 
WAV files employing the best classifier. 
 
6.2   Transcript Generation 
 
To make our model robust, we made sure that we 
can build the lexicon from the WAV files which 
do not have any transcript associated with it. We 
made use of IBM Speech to Text API 1 service to 
obtain the transcript of a given WAV file. 
 

                                                        
1 https://cloud.ibm.com/apidocs/speech-to-text 

6.3   POS Tagging and Word Segmentation 
 
At this stage, we tag the words based on their 
part of speech and also segment the words of the 
audio using the transcript generated by the Text-
to-Speech service. At first, Parts of Speech 
(POS) tagging of all the segmented words has 
been performed and we discarded the proper 
nouns (names, places etc.) as it conveys very 
little emotional features than adjectives or 
adverbs etc. 

After this, we segment the words based on 
their start and end time in the audio files. We get 
the start and times of all the words from the 
results obtained from Text-to-Speech service 
described in the previous sections. Finally, we use 
this information to extract the words using 
Pydub2, a Python library for audio processing. 
 
6.4   Emotion Word Lexicon 

 
The first column of the lexicon represents the 
words that have been spoken and second column 
represents the gender and third column 
represents the emotion in which the 
corresponding word has been spoken. The last 
column represents the location of the WAV file 
containing the utterance of the corresponding 
word in the specified emotion. We have also 
grouped same words spoken in different 
emotions. Presently, the lexicon contains only 
1K words in 5 different emotion categories. 
Three native speakers have evaluated the 
emotional utterances and an agreement score of 
pair wise kappa k=0.92 was found. The minute 
disagreement was happened due to the 
segmentation and such words have been 
discarded from the lexicon. 

7 Conclusions 

In the present task, two classification models 
based on deep neural network, one using normal 
Feed-forward Neural Network (FFNN) and 
another using Convolutional Neural Network 
(CNN) architecture has been implemented and 
also a comparative study between these two 
models has been reported. Among the two 
models it has been shown that CNN model 
outperformed the FFNN model. The models 
have been developed from a training set which 

                                                        
2 https://pydub.com/ 
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consists of only English language. It will be an 
interesting study to apply other languages to 
train the model and compare the performances 
for the same.  

In addition to that, we have implemented 
a multi-modal version of the deep neural model 
using Recurrent Neural Network, in order to 
improve the classifier system. We have used 
features of both audio and text and merged them 
into a single framework to investigate the 
effectiveness of the system. It is observed that 
the performance of the multi-modal system is far 
better that the FFNN or CNN based system in 
classifying emotions. 

As we have mentioned earlier that we 
have developed a database which contains 
emotional utterances. However, the size of the 
database is not very large, we had a limited 
number of test samples and hence it affected the 
development of the proposed database. 
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Abstract

This study aims to develop a semi-
automatically labelled prosody database
for Hindi, for enhancing the intonation
component in ASR and TTS systems, which
is also helpful for building Speech to Speech
Machine Translation systems. Although no
single standard for prosody labelling exists in
Hindi, researchers in the past have employed
perceptual and statistical methods in literature
to draw inferences about the behaviour of
prosody patterns in Hindi. Based on such
existing research and largely agreed upon
theories of intonation in Hindi, this study
attempts to first develop a manually annotated
prosodic corpus of Hindi speech data, which
is then used for training prediction models
for generating automatic prosodic labels.
A total of 5,000 sentences (23,500 words)
for declarative and interrogative types have
been labelled. The accuracy of the trained
models for pitch accent, intermediate phrase
boundaries and accentual phrase boundaries is
73.40%, 93.20%, and 43% respectively.

1 Introduction

In order to produce natural sounding speech
units, many Automatic Speech Recognition (ASR)
and Text-to-Speech (TTS) systems incorporate
suprasegmental prosodic features, which gener-
ally apply to larger units of representation like
phrases or the sentence. Some of the intonational
aspects that are covered through prosody include
pitch accent, phrasing, duration etc. Spoken in
natural rhythm, sentences constitute grammatical
breaks and accents which lend specific intonational
contours to different sentence types. In general,
words may contain lexical stress according to gram-
matical rules (some words in many languages are
not stressed at all), at other times, words may be
stressed to convey focus. When strung together,

sentences spoken naturally, and impacted by extra-
neous factors such as speaker motivation, mood,
speed etc serve to modify prosodic structure of spo-
ken speech in ways that render it natural sounding
to human perception. It is therefore important to be
able to input these features, along with the orthog-
raphy to phonemic conversions, into TTS systems,
in order to emulate human-like intelligible voices
in building Speech to Speech Machine Translation
(SSMT) systems.

Section 2 discusses previous studies in Hindi in-
tonation, with a focused perspective on the develop-
ment of theories on pitch accent and phrase breaks
in Hindi sentences. The theories discussed in this
section form the basis for the linguistic analysis and
annotation of the declarative and interrogative sen-
tences, discussed in later chapters. Section 3 talks
about the speech resource used in the building of
this dataset, with a bried overview of the labelling
framework discussed in section 4. Sections 5 and 6
discuss the manual and automatic approaches used
in the development of this dataset, with the results.

2 Background

Hindi belongs to the Indo-European language fam-
ily and has over 500 million speakers in India. A
number of studies exist in literature on Hindi in-
tonation. One of the most pioneer of works was
by (Moore, 1965), who analyzed Hindi intonation
in terms of three different segmental levels in hier-
archical relation to each other: foot, measure and
sentence. According to his theory, foot consists
of one or more syllables in which pitch rises from
beginning to end continuously. Measure is the sec-
ond level of phrasing in which a focused element
is separated from the rest of the sentence. Sentence
is the topmost level, which encompasses the entire
sentence intonation. (Harnsberger, 1994) makes an
observation along similar lines in which he states
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that there is a rising pitch contour on content words,
in which the low part of the rising contour is a low
pitch accent and the high part is either a high trail-
ing tone or boundary tone. The other level of phras-
ing is the sentence. (Féry and Kügler, 2008) talk
about the rising pitch contour on each constituent
of the data that they have considered and call it
the prosodic phrase and relate it to the syntax of
the sentence. (Nair et al., 2001), (Dyrud, 2001)
suggest, in their work, that Hindi has lexical stress,
such that every word has a particular syllable on
which prominence is realized. (Sengar et al., 2012),
from their investigative studies, put forward the the-
ory that Hindi is an accentual phrase language and
that the Accentual Phrase (AP) was the smallest
tonally marked prosodic unit, characterised by a
rising contour, the observation being similar to that
proposed for Bangladeshi Standard Bengali (Khan,
2008), a closely related Indo European language.
Their research hypothesized that the intonation pat-
tern of Hindi sentences contained a series of APs,
characterised by rising contours (which correlate to
pitch patterns within the AP) and that the domain of
each AP is marked by prosodic boundaries, which
may or may not be equal to a single word. The final
tone can be overridden by a falling tone in case of
declaratives. The entire sentence constituted an IP
(intonational phrase) comprised of many ip (inter-
mediate phrase), characterized by silence junctures,
and each ip contains one or more APs.

(Jyothi et al., 2014), through exploratory inves-
tigation using non-expert and expert transcribers,
concluded that prosodic phrasing was more consis-
tently agreed on between non-expert transcribers
amongst themselves and with the expert tran-
scribers (measured by Cohen’s kappa coefficient).
It was also observed that the degree of agreement
in prominence (pitch accent) marking was lower,
in both cases.

3 Speech data resource

The speech corpus obtained and used for this work
was developed through the Indian Language Tech-
nology Proliferation and Deployment Centre1 un-
der the Technology Development in Indian Lan-
guages (TDIL) program, Ministry of Electronics &
Information Technology (MeitY), MC&IT, Govt
of India. The corpus contains 50 hours of synthetic

1http://tdil-dc.in/index.php?option=
com_download&task=showresourceDetails&
toolid=268&lang=en

speech data for both male and female speakers of
Hindi. The corpus contains varied sentence kinds
(simple, complex) and types (declarative, interrog-
ative, negative, exclamatory etc.) that have been
used to choose a varied representation. Sentence
units have been selected and extracted from this
data for this work.

4 Labelling framework

4.1 Autosegmental-Metrical (AM) model

The Autosegmental-Metrical framework is a
mode of intonational structure that is one of the
foremost frameworks used for prosody analysis
that was built on the tenets of fundamental work by
(Pierrehumbert, 1980) with further refinements by
(Beckman, 1986), (Pierrehumbert and Beckman,
1988), (Gussenhoven et al., 2004) and others.
The term ‘autosegmental-metrical’, coined by
(Ladd, 2008) was based on the Autosegmental
and Metrical frameworks of phonology, with
the autosegmental tier representing intonation
structure and metrical tier the phrasing and promi-
nence. Drawn from Autosegmental Phonology, the
proposal by (Pierrehumbert, 1980) was that pitch
levels are seen as autosegments for intonational
analysis while tones are represented by the pitch
accent, phrase tone and boundary tone. The
tones High (H) and Low (L) were formalized as
being associated with stressed syllables as well
as prosodic boundaries. The tones associated
with stressed syllables were pitch accents and
represented with an asterisk (*) while the boundary
tones were marked with a percent (%) sign. In
addition, phrasal tones were observed on the
intermediate phrase boundaries, which were
notated with a hyphen (-). Intermediate phrases
were seen to be prosodic units that were larger
than the syllable and smaller than the intonational
phrase, whose prosodic domain included the whole
sentence. Subsequently, this model has been
applied to various languages (Japanese (Venditti,
1997), Korean (Jun, 2000), Dutch, German, Italian,
French, etc.) with minor modifications.

4.2 Tones and Break Indices (ToBI)

ToBI ( Tones and Break Indices) is a system for
transcribing the intonation patterns and other as-
pects of the prosody of originally, English utter-
ances (Beckman and Ayers, 1997). The labelling
scheme consists of:
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• 6 discrete intonation accents types: H*, !H,
L*, L*+H and L+H*.

• 2 phrase accent type: H- and L-

• 4 boundary tones: L-L%, L-H%, H-L% and
H-H%

• 4 break levels: 1, 2, 3, and 4

• A HiF0 marker for each intonational phrase

An utterance marked using ToBI labeling conven-
tions contains a number of tiers of information: a
tone tier, carrying accent information, a break tier
for marking prosodic boundaries and a comment
tier for miscellaneous information.

ToBI is a standard transcription system for mod-
eling prosodic events of spoken utterances in dif-
ferent languages. It has become a framework to
analyze the intonation system and relationship be-
tween prosodic and intonation structures of differ-
ent languages.

5 Manual Prosodic Labelling

500 simple sentences of the types declarative and
interrogative were selected and labelled within
the frameworks of the intonational framework ob-
served in previously mentioned studies. This an-
notation follows the proposed framework that the
domain of intonation phrase (IP) is the whole utter-
ance, ending with the boundary tone and which
may contain one or more intermediate phrases
(ip), demarcated by the phrase tone. The small-
est prosodic domain is the Accentual Phrase (AP)
containing the pitch accent and this may cover one
or more words in length. The default pitch accent
is observed to be the rising pitch accent (L*Hp)
falling on each content word which starts at the
left edge of the AP, rising towards the rightmost
edge and declines towards the start of the next AP.
The only exception is in the final AP, where the
boundary tone may override the final AP decline.

Praat2, a freely available speech analysis soft-
ware, was used to identify and mark the prosodic
boundaries and tones associated with pitch move-
ments. 3 native Hindi speakers with training in
phonetics and phonology, transcribed the data.

5.1 Declarative sentences
In Fig 1, the declarative sentence is divided into 2
prosodic phrases and shows the pitch pattern L*Hp,

2https://www.fon.hum.uva.nl/praat/

overridden by the L% boundary tone for declara-
tives.

Figure 1: ‘ladka ja raha hai’

Figure 1 example: ladka ja raha hai
boy go is-PROG-MASC
The boy is going

This relatively straightforward pattern may be
affected by other phenomena that carry information
structure, like scrambling and focus. Hindi being
a head final, relatively free word order language
conveys information by the scrambling of focused
constituents to the head of the structure and/or plac-
ing a higher pitch accent on the focused element.
Focus has also been shown to insert a prosodic
break in the post focus word (Moore, 1965) as well
as create a compression in pitch range post focus
(Harnsberger and Judge, 1996).

Figure 2: ‘Suron Tulsi ki janmasthali hai’

In Fig 2 the object ‘suron’ contains the focus
and is marked by a relative raised pitch accent com-
pared to the utterance level and the postfocal word
is lowered. Figure 2 example:

Suron Tulsi ki janmasthali hai
Suron Tulsi of birthplace is
Suron is Tulsi’s birthplace
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5.2 Interrogative sentences
In the interrogative sentence in Fig 3, the intonation
pattern follows the L*Hp rising pattern, with a
rising H% boundary tone.

Figure 3: ‘kya tum chal paoge’

Figure 3 example: kya tum chal paoge
are you walk able-FUT
will you be able to walk

This was found to be the case in most simple
interrogative sentences, except in case of relative
higher pitch on seemingly focused elements, as in
on the focused ‘kahan’ (where) in Fig 4.

Figure 4: ‘ladka kahan ja raha hai’

Figure 4 example: ladka kahan ja raha hai
boy where go is-PROG
where is the boy going

The H tone accompanying this rise and fall was
observed to have the downtrend component, as-
sociated with another closely related Indo-Aryan
language, Bengali (Jun et al., 2014).

Figure 5 example: Kamala chai piya karegi
Kamala tea drink do-HABI
Kamala will drink tea

The downtrend observed in the consecutive H
tones in Fig 5 are consistent with the observation

Figure 5: ‘Kamala chai piya karegi’

that H tones in successive APs are of a lower pitch
than the preceding. Apart from minor effects of
microprosody, there were not many deviations ob-
served in this intonation pattern

5.3 Inter-Annotator Agreement
Three linguists (native speakers of Standard Hindi)
belonging to Delhi, with familiarity in ToBI anno-
tation conventions, were asked to label the dataset.
Some initial training was provided for the analy-
sis as well as the annotation labels presented to
them for this research. Initial training consisted of
individual instructions as well as calculating inter
annotator consistency, and this was carried out it-
eratively to achieve the desired accuracy. Overall
transcriber agreement (calculated using Cohen’s
kappa) for prosodic breaks was 0.87, and for pitch
accents was 0.69.

6 Automatic Prosodic Labelling

The manually labelled sentences developed in
the previous section has been used as training
data to fine-tune Au-ToBI, an existing automatic
prosody labelling toolkit widely available (Rosen-
berg, 2010), by building newly trained models
within their standard specifications. The study
is a comparative analysis on the performance of
accuracy between pre-existing and newly trained
Au-ToBI models for this research. Au-ToBI was
particularly selected for its adaptability to ToBI,
which had been used as the labelling conventions
for the manually annotated data as well.

6.1 Automatic ToBI
Au-ToBI (Rosenberg, 2010) is a publicly avail-
able tool that runs on Java, which contains models
trained on English sentences to automatically de-
tect and extract prosodic breaks and pitch accents
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from spoken utterances . Based on pre-trained mod-
els of English, initial detection of pitch accents and
phrase boundaries is carried out, based on cues like
pitch excursions and silence duration. This is fol-
lowed by the classification of the phrase boundary
tones and type of pitch accent prediction. The clas-
sification of prosodic breaks and pitch accents is
done as per the ToBI annotation conventions.

6.2 Experiments in Automatic Labelling

This experiment was conducted in two parts. The
Hindi manual prosodic dataset developed in section
5 was divided into training and test data in 90:10 ra-
tio. The first experiment on the English model was
evaluated with the test data, while the second ex-
periment was conducted with the training and test
sets. The experiments are divided into two steps.
First, use pre-trained English model detection and
classification algorithms in Au-ToBI to generate
automatic labels for Hindi utterances and measure
accuracy, and second, use manual annotated data
to build Hindi prosody models for Au-ToBI.

The pre-processing of this dataset consisted of
manually segmentation of sentences into words in
the TextGrid files. The transcription was carried
out in Devanagari. Since the Hp boundary tone for
AP was a distinct feature from the standard ToBI
guidelines, the tones in the training sentences were
mapped to their corresponding ToBI labels. The
“breaks” section in the uploaded files was converted
to Au-ToBI format, under the alignment process.
This included conversion of “number” to “time” etc.
TextGrid and WAV files were named similarly and
located in the same folder for use in the training.

Parameters and values for all three tiers “words”,
“breaks” and “tones” were implemented, along with
the Hindi model classifiers and detectors. Multiple
command lines were provided for training pitch
accent, intonational phrase boundary, intermediate
phrase boundary, phrase accent and boundary tone
detection and classification models. The default
features were selected for the building of these
models, using feature extractor and feature clas-
sifier. Since the test files used for prediction of
Hindi labels came from one speaker, normaliza-
tion parameters were not used in this set up. The
built Hindi Au-Tobi models were evaluated on the
test data. The 50 hours TDIL speech corpus was
used to extract a further 4,500 declarative and inter-
rogative sentences, split 50:50 for declarative and
interrogative sentences.

6.3 Results

Results are output as TextGrid files and in addition
to the “words” tier that was present, contains two
additional generated tiers named “tones” (for gen-
erated pitch accents) and “breaks” (for generated
prosodic breaks). The accuracy of the models are
demonstrated in the below figure.

Figure 6: ‘Results of pre-trained and newly trained
Au-ToBI models’

7 Conclusion and Future Work

The sentences labelled with the prosodic labels are
a valuable source of training data for ASR and
TTS systems to introduce the naturalness compo-
nent that is often derived from prosodic elements.
This study aims to employ the studies on intona-
tional behavior of simple declarative and interrog-
ative sentences in Hindi done in recent years and
develop a semi-automatically annotated labelled
dataset that can be used to enhance the prosodic
output in SSMT systems for a natural sounding
voice. The approach is modeled on the principles of
Tones and Break Indices (ToBI) annotation guide-
lines, and recent research on prosodic boundaries
and prominence marking in Hindi and related lan-
guages. 2,550 words (500 sentences) are manually
annotated and these sentences are used to extend
the corpus size up to 5,000 sentences, using Auto-
matic ToBI (Rosenberg, 2010), (Jyothi et al., 2014).
The research aims to develop a prosody labelled
database for Hindi for training speech models for
natural sounding voices. The prosodic labelled
dataset and developed Hindi-AuToBi model will
be available on GitHub at https://github.com/
esha-banerjee/Hindi_Au-ToBI.
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Abstract

Artist and music language recognitions of mu-
sic recordings are crucial tasks in the music
information retrieval domain. These tasks have
many industrial applications and become much
important with the advent of music streaming
platforms. This work proposed a multitask
learning-based deep learning model that lever-
ages the shared latent representation between
these two related tasks. Experimentally, we
observe that applying multitask learning over
a simple few blocks of a convolutional neural
network-based model pays off with improve-
ment in the performance. We conduct experi-
ments on a regional music dataset curated for
this task and released for others. Results show
improvement up to 8.7 percent in AUC-PR,
similar improvements observed in AUC-ROC.

1 Introduction

Music is a universal language that we innately un-
derstand. It can influence or induce new emotions
in the listeners. Artists project their emotions and
feeling onto their music that is felt and observed in
the music. Artist recognition of a music recording
is an active area of research in music information
retrieval (MIR) (Mesaros et al., 2007; Sharma et al.,
2019; Hu et al., 2021) and has various applications.

Artist recognition is crucial in the areas of music
index, retrieval, and recommendation. The digiti-
zation of the music industry and music streaming
platforms have created large volumes of digital mu-
sic that need to be processed and stored on a large
scale. This has reignited the research in the music
domain. Recognition of the artist of a song is cru-
cial for these music streaming platforms. We also
have our favorite artists, whom we search for on
these streaming platforms as music listeners, and it
shows how vital artist recognition is.

Machine learning-based approaches treat this
problem as a multi-label classification problem.

There have been many recent deep learning-based
techniques that perform very well for this task.
The approach in these techniques is to use vari-
ants of spectrogram and train the deep neural net-
work model on that visual representation (Yu and
Slotine, 2009; Kalantarian et al., 2014; Wu et al.,
2018). Some techniques have used raw waveforms
to train sequence-based models. These techniques
have revealed that related tasks specific noise fil-
tering can boost the overall generalization of deep
learning-based models for music-related tasks.

Surprisingly, given techniques by researchers do
not leverage the shared representation learned by
multitask learning of related tasks. In this paper, we
propose a multitask learning-based model for artist
recognition that leverages the shared representation
learned from the related task of music language
recognition. The results show improvement over
single-task learning. We have used multitask learn-
ing with convolutional neural networks (CNN) for
artist recognition, and we observed improved per-
formance.

Multitask learning is a machine learning
paradigm in which related tasks are trained together
using the same model which shares bottom layers
(in neural networks) among the related tasks. The
training signals (gradients) from different related
tasks force the model to learn more generalized
data representation by filtering out noise for each
related task (Böck et al., 2019; Zeng et al., 2019).
Alternatively, we can say the knowledge learned for
a task helps in the performance over another related
task. In our case, we use two related tasks of artist
recognition and music language recognition, where
artist recognition is the primary task for leveraging
shared representation from multitask learning. Mu-
sic recordings spectrograms are used as an input for
the model, and corresponding artists and language
are predicted as an output by the model.

This paper is organized as follows: Section 2
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Figure 1: Proposed Multitask learning based model
architecture.

presents the proposed approach. The dataset, ex-
perimental setup is summarized in Section 3. In
Section 4, we present the results and discussions of
our findings. Finally, we conclude in Section 5.

2 Proposed Method

Our proposed approach is a model based on con-
volutional neural networks (CNN) similar to VGG
architecture. CNNs are very popular in the com-
puter vision domain. Here we have chosen CNN
because the spectrogram representation of music
samples can be treated as an image, and CNNs can
extract relevant knowledge from them. This spec-
trogram approach is not new and has been used in
the past with traditional machine learning. How-
ever, advances in computer vision have given new
avenues in the spectrogram representation for mu-
sic tasks.

The architecture of our model is shown in Fig-
ure 1. A mel-spectrogram taken as a 2D-tensor
with (187x96) is taken as an input to the network.
The mel-spectrogram consists of 187 frames which
correspond to 3 seconds of music data and 96 mel-
bands. The extraction of the spectrogram from the
music recordings is discussed in Section 3.2.1.

A batch of spectrograms with size 64 is passed

to five blocks of CNN layers. Each block consists
of a CNN layer along with batch normalization,
max-pooling, and dropout. The kernel size of CNN
layers is fixed to (3x3), and the numbers of chan-
nels are 32, 64, 128, 64, and 32, respectively, with
stride 1 of CNN layers in five blocks. The non-
linearity in the CNN is set ReLU. After each CNN
layer, batch normalization (BN) is applied to nor-
malize the weights during training. Following BN,
max-pooling is applied with a pool size of (2x) and
stride of (2x2). Lastly, a dropout layer with a 0.25
drop rate is applied.

After these CNN layer blocks, a flatten layer
is used to compress the output shape from CNN
blocks to the 1D tensor. Dense layers then use
this tensor corresponding to each related task (two
in our case, namely artist recognition, and music
language recognition). Each dense layer has the
number of units equal to the number of labels in
the corresponding task (64, 17 in our tasks). The
softmax activation function is used in these dense
layers’ outputs to get the probability distribution of
labels relating to the tasks.

These are 193k trainable parameters in the top
five blocks of our proposed model. The parameters
in the output layers are dependent on the number
of parameters in the previous layer and the number
of labels in the corresponding task. The model
shares the five blocks of the model between two
related tasks. The representation learning during
the training of these two tasks forces the model to
generalize better than it would have been training
on a single task. The loss used for training the
model is a weighted sum of losses from individual
tasks. Categorical cross-entropy is used as a loss
for both tasks. The weighted sum for overall loss
function:

L = Lartist + αLlang

Here, Lartist and Llang denote the corresponding
loss for artist and music language recognition tasks,
respectively. α represents the hyper-parameter for
the weightage given to the loss of music language
recognition task in the overall loss. Setting it to
zero disables the multitask learning and is done
when we are done with training the network. The
choice of α is discussed in Section 3.2.4.
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3 Experiments

3.1 Dataset Description

The model is trained on a dataset prepared for re-
gional music by us (Singh, 2021). The dataset con-
sists of 17 languages: Hindi, Gujarati, Marathi,
Konkani, Bengali, Oriya, Kashmiri, Assamese,
Nepali, Konyak, Manipuri, Khasi & Jaintia, Tamil,
Malayalam, Punjabi, Telugu, Kannada.

For each language, four artists are chosen (two
male and two female), and for each artist, five songs
are collected. The artists are chosen considering
the veteran and contemporary artists. So, two out
of four artists are veteran performers, and the re-
maining two are modern artists. Overall, there are
68 artists and 340 music songs with 23.2 hours of
duration.

3.2 Experimental Setup

3.2.1 Preprocessing
A preprocessing step is performed over the music
recordings before feeding them to the model. Mu-
sic recordings are converted to mel-spectrograms
of 3-sec segments. These 3-sec segments are cre-
ated from two 1 minute long pieces taken out from
each music recording. The spectrograms are gener-
ated from resampled waveforms with 96 mel-bands.
The shape of the spectrogram is (t × 96), where
t is the number of frames (proportional to time).
Librosa library (McFee et al., 2015) is used for the
extraction of mel-spectrogram from 3-sec music
segments.

3.2.2 Evaluation Metrics
We have used average precision (AP) as an evalu-
ation metric. It is commonly used in multi-label
classification tasks. It is the weighted average of
precision values across different recall values, or it
can be said as the area under the precision-recall
curve (AUC-PR). We also report another evalua-
tion metric called the area of the receiver operating
characteristic curve (AUC-ROC).

3.2.3 Training
The training of the model is performed with a batch
size of 32. As we take 3-sec long music data for
generating spectrogram, they must be batched to-
gether to speed up the training process. Tensorflow
is used as a deep learning framework for building
and training our model. This framework handles
the batching of spectrograms.

We split the data into three splits of 80, 10, and
10 percent of samples for training, validation, and
testing purposes. The splits are ensured to happen
at song level instead of segment level to ensure
that segments from a few songs are not just present
in validation and testing datasets, preventing data
leakage. Adam optimizer is used for training the
model with a 0.001 learning rate.

3.2.4 Multitask Learning Weighted Loss
Function

The overall loss function is defined as a weighted
sum of the losses of individual tasks. That is L =
Lartist+αLlang. The hyperparameter α influences
the contribution of Llang in the overall loss. We
tried different values for α for training the model
on the mentioned dataset to get the optimal value.
We found following formula works well in our
scenario:

α =
Nartist

Nlang

Here, Nartist and Nlang are the number of labels
in the artist and music language recognition tasks.
It can be said that α balances the numbers of labels
in the given tasks. The α for our experiments is
computed using the above formula.

4 Results

We performed multiple experiments over the de-
scribed dataset in Section 3.1. Baseline and Mul-
titask are two models selected and trained for two
tasks. Both models are the same architecture ex-
cept for the final dense layer. The Baseline model
has a single dense layer having units equal to the la-
bels in the given task. While in the multitask model,
there are two dense layers side by side for each task,
having units equal to two task labels. Comparing
the result of baseline and multitask models allow us
to observe the impact of multitask learning on the
given task with the help of additional related task.
The comparative analysis is presented in Table 1,
which shows models performance across different
configurations.

We report that the multitask model shows im-
provement over the baseline model for both tasks
and can be observed in both evaluation metrics.
On the curated dataset, we observe an increase of
4.43 percent for artist recognition in the AUC-ROC
metric, while the AUC-PR metric recorded a 7.48
improvement. For the music language recognition
task, improvements are even further. 5.55 improve-
ment is observed in the AUC-ROC and 8.69 for
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Model type Nartist Nlang # songs # 1-min segments # 3-sec segments AUC-ROC (%) AUC-PR (%)
Baseline 68 17 340 680 1360 70.45 39.78

Multi-task I 68 17 340 680 1360 74.88 (+4.43) 47.26 (+7.48)
Multi-task II 68 17 340 680 1360 76.00 (+5.55) 48.47 (+8.69)

Table 1: Baseline and Multitask models performance reported in AUC-ROC and AUC-PR metrics. Nartist and
Nlang represents the number of labels in artist recognition and music language recognition tasks, repectively. (+x.xx)
represents the increase in the given evaluation metric compared to the performance of Baseline model.

the AUC-PR metrics. We observe from these ex-
periments that the performance can be improved
by adding more related tasks and increasing the
number of data samples.

5 Conclusions

In this paper, we present the importance of artist
recognition from the perspective of music stream-
ing platforms for storage, indexing and music in-
formation retrieval tasks. It is crucial to building a
more generalized system by these platforms.

Towards building a more generalized system, we
observe that multitask learning can help achieve a
more generalized system by leveraging the model’s
representation across different related tasks. We
propose a multitask learning model for artist and
music language recognition tasks. Experiments de-
pict that the multitask learning approach improves
the performance of the single-task baseline model.
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Abstract

Among the many applications of Music Infor-
mation Retrieval (MIR), melody extraction is
one of the most essential. It has risen to the
top of the list of current research challenges
in the field of MIR applications. We now
need new means of defining, indexing, find-
ing, and interacting with musical information,
given the tremendous amount of music avail-
able at our fingertips. This article looked at
some of the approaches that open the door to
a broad variety of applications, such as auto-
matically predicting the pitch sequence of a
melody straight from the audio signal of a poly-
phonic music recording, commonly known as
melody extraction. It is pretty easy for hu-
mans to identify the pitch of a melody, but
doing so on an automated basis is very dif-
ficult and time-consuming. In this article, a
comparison is made between the performance
of the currently available melody extraction
approach that is state-of-the-art Melodia and
the technique based on time-domain adaptive
filtering for melody extraction in terms of eval-
uation metrics introduced in MIREX 2005.
Motivating by the same, this paper focuses
on the discussion of datasets and state-of-the-
art approaches for the extraction of the main
melody from music signals. Additionally, a
summary of the evaluation matrices based on
which methodologies have been examined on
various datasets is also present in this paper.

1 Introduction

In recent times, the music business and music sup-
pliers such as Google, Spotify, and others have
seen significant growth. By that time, the music
business had also been reorganized from the cylin-
der age to the digital era, resulting in the current
scenario where consumers may acquire millions of
songs on personal phones or via cloud-based ser-
vices, as well as the future. It is necessary to cope
with the enormous quantity of music to search for

and recover the required record effectively. At the
moment, the primary issue of music suppliers is to
categorize the vast number of songs available on
the market based on their many components, such
as rhythm, pitch, melody, and so forth. When we
need to identify a particular soundtrack, we often
reproduce the melody. There is a great deal of con-
tinuous progress in audio processing, which may
assist customers in interacting with the songs via
their sound component. Music transcription is the
act of translating an aural input into a detailed de-
scription of all the notes being performed (Gómez
et al., 2012). It is a task that a competent mu-
sic student should be able to do very efficiently.
It has, on the other hand, long been the topic of
computer research. Despite this, owing to musical
harmony’s intricate and intentionally overlapping
spectral structure, it has proved to be very difficult
to achieve (Dressler, 2011).

“It is melody that enables us to distinguish one
work from another. It is melody that human beings

are innately able to reproduce by singing,
humming, and whistling. It is melody that makes
music memorable: we are likely to recall a tune

long after we have forgotten its text.”.
(Hofmann-Engl, 1999)

The definition given by Poliner et al. (2007) is
one of the most frequently cited in the literature
and is one of the most widely used:

“roughly speaking, the melody is the single
(monophonic) pitch sequence that a listener might

reproduce if asked to whistle or hum a piece of
polyphonic music, and that a listener would

recognize as being the ‘essence’ of that music
when heard in comparison”.

The melody is restricted to a single sound source
throughout the work being examined, which is
deemed the most prominent instrument or voice
in the mix (Yeh et al., 2012; Klapuri, 2004). When
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polyphonic music is played, the melody is the sin-
gle or monophonic pitch grouping that an audience
may replicate during any moment in time to whis-
tle or hum a piece of the music, so a large number
of listeners would perceive as the ’essence’ of the
music when the music is played in contrast (Reddy
and Rao, 2018). This concept is now susceptible
to a great deal of subjective interpretation since
different members of an audience may hum other
portions in the aftermath of listening to a compara-
ble piece of music.

Because of these vast number of various inter-
pretations of melody and polyphony available, it
becomes easier to categorize melody retrieval as
a signal processing task than it was before.: We
wish to correctly predict the series of f0 values that
correlate to the voices or devices that are promi-
nently featured in a clip of polyphonic music Aside
from that, we must approximate the periods dur-
ing which this voice is absent from the mixture (a
challenge also termed as the ”voicing detection”
issue) (Salamon et al., 2013). While this job may
seem virtually insignificant to a human listener,
many of us are capable of singing along to the
melodies of our favorite songs even if we have no
formal musical training.

It is necessary to automatically acquire a series
of frequency values of the dominant melodic line
for polyphonic audio signals in order to complete
the melody extraction job successfully Fig. 1. As
defined by the American Institute of Music, poly-
phonic music is music in which at least two notes
may be played at the same time on a variety of
instruments (for example, bass, voice, and guitar)
or on a single instrument that can play numerous
notes in a single period (for example, the piano). A
listener may imitate the tunes even if he or she does
not have any musical training. However, when we
try to automate this process, things become a little
more complicated primarily due to two reasons:
First, a polyphonic music signal is generated up
of all the sound waves from all the devices in the
track superimposed on each other. In the spectral
content of the signal, various sources’ frequency
components overlap, making it difficult to assign
particular energy levels in specific frequency bands
to separate instruments’ notes. Second, even af-
ter obtaining a pitches-based representation of the
audio stream, we must still determine the pitch val-
ues that correspond to the dominant melody in the
audio stream.

Figure 1: Melody extraction from audio signal of poly-
phonic music.

The task of automated melody extraction is com-
mon in the area of Music Information Retrieval
(MIR). There have been a plethora of methods
developed for the extraction of melodies from
polyphonic music. Based on the methods used
to develop them, these algorithms can be clas-
sified namely Source separation-based approach
and salience-based approach (Salamon and Gómez,
2012). On the other hand, some methods do not
fall under any of these categories. Algorithmic
technique which is categorised as data-driven ap-
proaches, the power spectrum is directly send to
deep neural network based machine learning sys-
tem, which attempts to determine the melody fre-
quency from each frame.

1.1 Salience-based approach:

Following the principles established by
Scheirer Scheirer (2000), melody extraction
approaches based on salience function are
founded on the concept of “understanding without
separation.” Primarily, the following steps are
required in melody extraction: The majority of
the time, in preprocessing phase, to increase the
melodic content of a composite signal, filtering
is applied to it (?). Aspects of the music signal’s
time-domain samples are divided into frames
of similar length and translated to the spectrum
domain during the spectral representation and
processing step. To follow the f0 transitions in the
dominant instrument, the selected window widths
give sufficient frequency resolution to differentiate
sinusoidal partials (Goto, 2004; Hsu and Jang,
2010). Most techniques handle the modified
signal’s raw spectral peaks. To put it simply,
a salience function is just an evaluation of the
salience of pitch values over time that is dependent
on the recently identified partial peaks. Candidate
melodies for the melody f0 are considered to
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be the peaks in the salience function (Klapuri,
2004). It is necessary to discover the salience
peaks that correlate to actual melody peaks like
the last stage in this process. The majority of
algorithms directly monitor the melody peaks from
the salience function.

1.2 Source separation-based approach:
It is feasible to distinguish the source responsible
for the fundamental frequency from the remainder
of the composite signal by using several source sep-
aration techniques (Ryynänen and Klapuri, 2008).
By considering the polyphonic signal’s power spec-
trum as the sum of lead and harmony voices, it was
suggested to use source separation-based melody
extraction to extract melodies (Durrieu et al., 2010).
It is suggested to characterise lead vocals using a
source-filter-based paradigm, and to describe ac-
companiment as a sum of arbitrary sources with dif-
ferent spectral shapes, respectively. For the source-
filter model, two new models are proposed: the
“Smooth-Instantaneous Mixture Model (SIMM)”
and the “Smooth Gaussian-Scaled Mixture Model
(SGSMM)”. The SIMM is used to represent the
dominating voices, while the SGSMM is used to
represent the accompaniment. The expectation
maximization approach is used to estimate the sys-
tem model parameters. In order to determine the
singer’s f0 contour from the tape, Tachibana et al.
(2010), employed the temporal variability of the
song.

1.3 Data-driven approach:
In contrast to data-driven strategies, which have
only been examined seldom, most algorithms, as
we have previously stated, are based on the salience
function and source separation from music mix-
ing. However, in recent years, this sort of method
has emerged as a promising new field of investiga-
tion (Park and Yoo, 2017; Su, 2018). In order to
visualise the distribution of energy in a music signal
across time and frequency, spectrograms are used
in preprocessing step. To minimise the leakage
that happens during spectral transforms hanning
window is used. The majority of researchers chose
STFT because it gives time-based frequency infor-
mation regarding signals whose frequency compo-
nents fluctuate over time. When it comes to mu-
sic recordings, a time-frequency representation is
provided by the Constant—Q Transform (CQT). In
compared to STFT, CQT is virtually the best fit, and
the resultant representation is very low in dimen-

sionality as a consequence. (Kum et al., 2016; Rao
and Rao, 2010) devise the concept of multi-column
deep neural networks for the extraction of musical
notes As a classification-based technique, Using
the aforementioned methodology, scientists trained
each neural network how to correctly anticipate a
pitch label. Author combined the output of net-
works and post-processed it using a hidden Markov
model to deduce the melodic contour, which they
labelled as a result of their efforts.

Some of the state-of-the-art approaches for ex-
tracting the melody from music signals are de-
scribed in detail in this paper, which also demon-
strates how these techniques are instantly applica-
ble to MIR research. Further results of these mod-
els upon well-known datasets are also analyzed.
The following is the outline for the rest of the pa-
per. Section II describes the experimental setup
in which melody extraction approach has been dis-
cussed and including dataset and performance mea-
sures are also being discussed here. Results of the
assessment are reported in Section III, followed by
a result analysis. finally conclusions in section IV.

2 Experimental setup

2.1 Models:

This section provides a quick overview of some of
the state-of-art ways for extracting melody from a
piece of music data.

2.1.1 Melodia
Salamon and Gómez (2012) proposed a model

which is very popular in the filed of MIR in which
he uses the Pitch Contour Characteristics to extract
the melody from polyphonic music. In this model,
Contour characterization and its use for melodic
filtering are the most significant contributions. As
seen in Fig. 2, this technique is composed of four
major components that work together.

Sinusoid Extraction: Three states are present
in this stage: filtering, spectral transform, and
sinusoid frequency correction. In this case, an
loudness filter (equal) has been applied to increase
frequencies that the ear of human is more sensitive
to. Then the ShortTime Fourier Transform (STFT)
applied and taken small hop size to improve F0
tracking while creating pitch contours. The FFT’s
bin frequencies constrain the position of spectral
peaks, resulting in high peak frequency estimate
errors for low frequencies. For overcome this
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Figure 2: Block diagram of Melodia.

issue, they have calculated peak’s instantaneous
frequency (fi) and amplitude by using phase
spectrum.

f̂i = (ki + κ(ki))
fs
N

(1)

Salience Function: To illustrate the change in
pitch salience over time, a salience function is con-
structed from the spectra that have been extracted
and plotted against time. When this function is
used, the peaks create the F0 candidates for the
main melody. In this model, harmonic summation
is used to calculate salience. An integer multiple
(harmonic) of a frequency’s salience is calculated
as the sum of the weighted energies present there.
The summing solely uses the spectral peaks, exclud-
ing spectral values with masking or noise. Salience
function S(b) at each frame can be evaluated using
following definition:

S(b) =
∑

h

h=1

∑I

i=1
e(âi).g(b, h, f̂i).(âi)

β (2)

where, β represents the parameter of magnitude
compression and g(b, h, f̂i) defines the weighting
function.

Pitch Contours: It is then determined which
peaks at each frame are probable melody F0
possibilities based on the salience function that was
produced. Firstly, non-salient peaks are filtered out
to minimize the noise contours creation. In order
to determine the most appropriate parameters for

contour formation, they compared contours created
from various excerpts to the melodic ground truth
of the excerpts and assessed them in terms of pitch
accuracy and voicing accuracy. After contours
creation, the main challenge is to finding the
specific contours which belongs to pitch. It is
necessary to establish a set of contour attributes
that will be utilised to assist the system in picking
melodic contours in order to do this.

Melody selection and extraction: As an alter-
native to picking melody contours, they formulate
this issue as a contour filtering problem, with ob-
jective being to filter out any contours that are not
melodic. The job of detecting when the melody is
there and when it is not is referred to as voicing de-
tection. In the last stage, choose the peaks that are
associated with the primary melody from among
the remaining shapes.When a frame has more than
one contour, the melody is selected as the peak of
the most salient contour. A frame without a contour
is considered unvoiced.

2.1.2 Model based on Time-Domain Adaptive
Filtering

Model developed by Reddy and Rao (2018) is
basically based on time-domain adaptive filtering.
The suggested approach extracts the voice melody
in phases from polyphonic music. The difference
in excitation intensity between the vocal and non-
vocal regions of the music signal distinguishes the
vocal from the non-vocal regions. The vocal re-
gions are then split into a sequence of notes by
detecting their onsets in the composite signal’s
frequency representation, which is then used to
segment the sequence of notes further. Individual
voice note melodic contours may be obtained by
using adaptive zero-frequency filtering in the time
domain.
In order to distinguish vocal and non-vocal areas,
the music signal is first passed through a zero-
frequency filter (ZFF), after which the vocal re-
gions are segmented into a series of notes is cre-
ated. According to the original ZFF approach, the
monaural speech signal with a single excitation
source is utilised to extract the F0 from the signal
before further processing. The mean subtraction
filter is designed using the time domain autocorre-
lation function to produce the average pitch period,
which is obtained using the time domain autocor-
relation function Music, on the other hand, is a
composite signal that is made up of a number of
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different pitched sources. The autocorrelation func-
tion cannot be used to determine the singer’s reso-
nance frequency or average pitch period because
it is too complex. The next step is to detect the
voiced and unvoiced segments.
Voiced and Unvoiced segment detection: Be-
cause the ZFR attenuates the vocal tract resonances
to a large extent, passing the signal through it
twice has considerably highlighted the source sig-
nal. When comparing the vocal source to the other
sources in a polyphonic music signal with a lead
voice, it is the vocal source that is most prominent.
It is thus possible to identify the vocalic areas by
analysing the strength of excitation (SOE) (Sala-
mon et al., 2014). A consequence of the vocals’
dominance feature is that the ZFF signal contains
a significant amount of energy in the voiced areas
and a very low amount of energy in the regions
which is unvoiced. In order to determine the in-
tensity of the excitation contour, the ZFF signal’s
slope at the instants of zero crossings of the ZFF
signal is calculated.

Voiced Note Onset detection: The melody
source’s fundamental frequency fluctuates greatly
between notes. In order to produce an accurate F0
for the lead voice, a simple mean subtraction fil-
ter is insufficient. By recognising note onsets, the
voiced segments discovered before may be further
split into voiced note-like regions. Signal parame-
ters such as short-time energy, spectral magnitude,
phase spectrum, etc. exhibit considerable changes
at an onset. Using a low-pass filtering technique,
the difference between the current frame and prior
frames of a detection function, which are exponen-
tially weighted, is calculated by

y(n) = F (n)−
A∑

a=1

F (n− a)

a
(3)

Where the onset detection functions are repre-
sented by F (n) and a represents the weighting
factor.

Melody detection: A polyphonic music signal’s
lead voice melody may be found by removing
the trend in the ZFR output of each note segment
adaptively using a mean subtraction window length
that corresponds to average pitch period of the
lead voice in the segment. As a final step, each
segmented note is subjected to Zero Frequency
Filtering with a trend elimination window based on
its average pitch period. In order to get the melody

Table 1: Dataset description.

Name Sample Rate (in
KHZ)

Number of clips

MIREX 2005 44.1 13

ADC 2004 44.1 20

IITKGP
HPMD

44.1 28

of the lead voice, the inverse of the difference
between consecutive GCI’s is calculated using the
note segments that represent the GCI’s.

2.2 Dataset:

The state-of-the-art to evaluating the melody of
an audio clip have been described in previous sec-
tion. In this part of article, we will cover datasets
that are used to analyze the aforementioned ap-
proaches. In the form of time–frequency pairings,
the datasets include music snippets as well as the
accompanying melodic ground truth. Specifically,
the ADC2004, Mirex05TrainFiles, and IITKGP
HPMD which each included 20, 13 and 28 excerpts,
were employed, respectively.

ADC 2004: This dataset contains four clips
from each of the following genres: pop, jazz, daisy,
opera, and MIDI (Musical Instrument Digital Inter-
face). This dataset comprises of twenty audio clips
were captured at a sample rate of 44,100 Hz for
about 20 seconds each using pulse code modulation
(16-bit) and a length of around 20s.

MIREX05: MIDI datasets with genres such as
rock, pop, jazz, and classical piano are the most
often utilised in melody extraction. This database
contains 20–30 s segments of single channel 16-bit
44,100 Hz sampling .

IITKGP HPMD: (Reddy and Rao, 2018)
Hindustani Classical Polyphonic Music recorded
by professional musicians, which are known as
IITKGP HPMD. The dataset contains 28 music
clips, each of which has an average length of 30
seconds and is performed by both male and female
musicians.

Table 1 lists all the datasets that were utilised in
the assessment process.

2.3 Performance measures:

In order to extract the melody, techniques must per-
form two objectives: first to estimate which part
of audio has melody and which part does not con-
tain melody (voicing detection) and secondly, to
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predict the proper predominant fundamental fre-
quency as melody (pitch estimation). A melody
extraction method usually outputs two columns,
the first with fixed interval timestamps generally of
10ms and with f0 values indicating the algorithm’s
pitch estimate for the melody at each timestamp in
the second column. Additionally, for each frame,
the algorithm specifies whether or not it believes
the melody is present or missing in that particu-
lar frame. For frames when the melody is judged
to be missing, this is usually expressed in a third
output column or by returning an f0 value with a
negative sign. It is possible for algorithms to re-
port a pitch label even in frames where algorithm
assume the pitch is missing i.e., unvoiced frames,
which is helpful for evaluating the performance of
the algorithm. The accuracy of a pitch estimation
algorithm may be evaluated independently of the
quality of its voice detection method in this way.
In another word, voicing detection mistakes do not
affect pitch estimation accuracy.
The output of an algorithm is compared with the
ground truth of an audio excerpt in order to assess
its performance for a particular audio clip. Ground
truth files are identical to output files, but they in-
clude the proper sequence of f0 values indicating
the melody of the audio clip. A monophonic pitch
tracker is used to create the ground truth on the
excerpt’s solo melody track. In other word, every
song we evaluate requires a multi track recording.
In order to evaluate an algorithm, it is necessary to
compare its output on a frame-by-frame basis to
the ground truth file supplied by the ground truth
file. The algorithm should report that it has identi-
fied the lack of melody in unvoiced frames in the
ground truth. It is anticipated that the method will
provide a frequency value that is identical to the
one found in the ground truth for voiced frames.
Some of the performance metrics frequently em-
ployed for melody extraction methods have been
addressed in this section.

We calculate five global metrics based on this
frame-by-frame comparison that evaluate various
elements of the algorithm’s performance for the
audio sample in the issue. These metrics were
introduced in MIREX 2005 and are now often used
to assess melody extraction methods.

The uni-dimensional estimated melodic pitch
frequency sequence and ground truth frequency
sequence, represented by the vectors f and F, re-
spectively (Kumar et al., 2020, 2019). The voicing

indication vector is denoted by the v, whose ith

element vi = 1 when the ith frame is judged to be
voiced (i.e., when a melody is present in the frame),
with matching ground truth values V for the other
elements in the vector. Unvoicing indications are
expressed by the notation v̄i = 1− vi.

Voice Recall (VR):The algorithm’s estimated
voiced frame ratio to the ground truth melodic
frame ratio. i.e., Frames that are really labeled
as melodic/melodic frame based on ground truth.

V R =

∑
i viVi∑
i vi

(4)

Voicing False Alarm (VFA): The ratio of
frames that were incorrectly assessed as melodic
frames by the algorithm to frames that were labeled
as non-melodic frames in ground truth.

V FA =

∑
i viv̄i∑
i v̄i

(5)

Raw Pitch Accuracy (RPA): The proportion of
properly pitched frames compared to frames that
are judged to be unpitched.

RPA =

∑
i viτ [ζ(fi)− ζ(Fi)]∑

i vi
(6)

where, threshold feature is describe by τ and can
be defined as:

τ [a] = { 1 if | a |< 500if | a |> 50 (7)

Function ζ maps a frequency (Hz) to a percep-
tually motivated axis in which each semitone is
split into a hundredth of a cent. A significant value
number of cents may be used to indicate frequency
over a reference frequency fref .

ζ(f) = 1200 log2(
f

fref
) (8)

Raw Chroma Accuracy (RCA): RCA works in
the same way as the RPA, except it doesn’t take into
account the octave mistake (a common error made
during melody extraction). i.e., The ground truth
and approximated f0 sequences are both assigned
to a single octave.

RCA =

∑
i viτ [⟨ζ(fi)− ζ(Fi)⟩12]∑

i vi
(9)
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Table 2: Evaluation result achieved by Melodia for
various testset.

Testset VR VFA RPA RCA OA
ADC 2004 0.83 0.18 0.64 0.80 0.74

MIREX05 0.76 0.24 0.57 0.70 0.61

IITKGP HPMD 0.77 0.27 0.75 0.86 0.76

Table 3: Evaluation result achieved by Time-Domain
AdaptiveFiltering-Based Method for various testset.

Testset VR VFA RPA RCA OA
ADC 2004 0.87 0.11 0.65 0.83 0.79

MIREX05 0.80 0.20 0.62 0.73 0.65

IITKGP HPMD 0.83 0.30 0.71 0.86 0.73

Where,

⟨a⟩12 = a− 12⌊ a

12
+ 0.5⌋ (10)

Overall Accuracy (OA): Overall Accuracy is
the percentage of frames properly identified with
both pitch and voicing based on the combination
of voicing detection and pitch estimation. In terms
of L, OA may be characterised as:

OA =
1

L

∑

i

Viτ [ζ(fi)− ζ(Fi)] + V̄iv̄i (11)

3 Result analysis

In this section we are comparing the result evalua-
tion for Melodia and time domain adaptive filtering
based model. In table 2 we can see the evaluation
metrices performed on the Melodia for melody ex-
traction and table 3 represents the result achieved
by the time domain adaptive filtering based model.
With the exception case of (VFA), which runs from
0 for best case to 1 for worst case scenarios, and
all other measures range from worst (0) to best (1).
The algorithm’s efficiency is calculated by aver-
aging the evaluation score of all music excerpts
for the measure in consideration across the entire
music dataset.

For analysis of these models lets check for its
best possible outcome. Assuming that we have a
flawless contour filtering strategy, we run tests to
evaluate the best possible outcome our state-of-the-
art algorithm could obtain. Taking a look at the
findings that our system produced, we can make
some observations. The total accuracy of the ideal
contour filtering simulation, for starters, is less than

Figure 3: Performance comparison of Melodia and time
domain adaptive filtering model over various test set.
(a) Voicing Recall(VR) for Melodia and time domain
adaptive filtering model. (b) Voicing False Alarm (VFA)
for Melodia and time domain adaptive filtering model.
(c) Raw Pitch Accuracy (RPA) for Melodia and time
domain adaptive filtering model. (d) Overall Accuracy
(OA) for Melodia and time domain adaptive filtering
model.

one hundred percent, as shown in table. When com-
paring the datasets ADC2004 and Mirex05, we
can see in Fig. 3, that the adaptive filtering based
technique performs much better than Melodia in
terms of RPA and OA. TWM is able to provide a
resonance frequency that falls inside the ZFF’s in-
variance range because of the predominance of the
voices. On the IITKGP HPMD dataset, the time
domain adaptive filtering technique achieves RP
and OA results that are equivalent to those obtained
with the Melodia method. It follows from this that
the adaptive filtering based technique works better
when dealing with music signals that have a high
concentration of voices. Furthermore, owing to
the impulsive nature of the percussion instrument’s
source, ZFF was unable to extract the proper GCI
placements of the voices. In the datasets ADC2004,
Mirex05, and IITKGP HPMD, an overall increases
for adaptive model in VR is found, which may be
ascribed to the broad dynamic range of the SoE
contour used for threshold. SoE and misclassi-
fication of non-vocals into vocals have grown in
IITKGP HPMD owing to the frequent stimulation
of the Tabla, as well as the Drum, which causes an
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increase in VFA performance.

4 Conclusion

For the purpose of automatically extracting the pri-
mary melody from a polyphonic piece of music,
we investigated the performance of Melodia and
a time domain adaptive filtering based model in
this study. In Melodia, pitch contours were formed
by combining the melodic pitch candidates that
were obtained via various signal processing proce-
dures. It is possible to identify melodic and non-
melody contours by analysing these pitch contours
and their distributions. In time domain adaptive
filtering model, The ZFF’s bandpass filtering prop-
erties are taken advantage of to create a hybrid
time- and frequency-domain melody extraction ap-
proach. In polyphonic music, the SoE contour is
thresholded to discern vocal and non-vocal parts.
The note segment sequence is produced by sens-
ing their frequency onsets. TWM method obtains
the mean subtraction filter resonance frequency.
Finally, the melody contour is retrieved by time-
domain adaptive zero-frequency filtering each note
segment. When using this approach, the lowered
results are mostly due to the mean subtraction win-
dow length being identified often outside of the
invariance range.
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Salamon, Jordi Bonada, Pedro Vera-Candeas, and
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Abstract

The Dorabella cipher is an encrypted note writ-
ten by English composer Edward Elgar, which
has defied decipherment attempts for more
than a century. While most proposed solutions
are English texts, we investigate the hypoth-
esis that Dorabella represents enciphered mu-
sic. We weigh the evidence for and against the
hypothesis, devise a simplified music notation,
and attempt to reconstruct a melody from the
cipher. Our tools are n-gram models of mu-
sic which we validate on existing music cor-
pora enciphered using monoalphabetic substi-
tution. By applying our methods to Dorabella,
we produce a decipherment with musical qual-
ities, which is then transformed via artful com-
position into a listenable melody. Far from ar-
guing that the end result represents the only
true solution, we instead frame the process of
decipherment as part of the composition pro-
cess.

1 Introduction

The Dorabella cipher (henceforth, simply Dora-
bella) is an encrypted note sent by Edward El-
gar, the composer of the “Enigma Variations”, to
his friend Dora Penny in 1897 (Santa and Santa,
2010). While many cryptography researchers have
assumed that the underlying message is an English
text, it has also been hypothesized that it may en-
code music, since Elgar was a composer and a
music teacher. This raises several interesting ques-
tions. Is it possible to find evidence for or against
the music hypothesis? What kind of music notation
could be devised with only two dozen possible dis-
tinct symbols? How would a musical decipherment
compare to the proposed textual decipherments?

In this paper, we attempt to answer these ques-
tions in a principled manner, by using n-gram lan-
guage models derived from collections of tran-
scribed music. However, we also approach musical

Figure 1: The Dorabella Cipher.

decipherment as a creative process. We demon-
strate this technique on Dorabella, producing a de-
cipherment that has musical qualities, transformed
via artful composition into a listenable melody.
While prior work typically pursues a single correct
decipherment, we instead adopt a creative approach
of converting ciphers into music, which might lead
to composition of new works.

This paper has the following structure: In Sec-
tion 2 we provide background on n-grams, perplex-
ity and monoalphabetic substitution ciphers. In
Section 3, we discuss prior work. In Section 4,
we describe our methodology, including datasets
for training language models. In Section 5, we
describe our results on encrypted melody samples.
In Section 6, our highest-scoring decipherment of
Dorabella as a melody is used as inspiration to
compose a new work.

2 Background

Substitution ciphers, their properties, and crypt-
analysis techniques have been studied for centuries
(Singh, 2011). A monoalphabetic substitution ci-
pher enciphers a plaintext by applying a 1-to-1
mapping of symbols to each character token, pro-
ducing a ciphertext which has a length equal to
the length of the plaintext. The symbol mapping
function is called the key. Given the key, revers-
ing the encipherment process and recovering the
plaintext is trivial: simply apply the inverse of the
key to each ciphertext symbol. The process of re-
covering the plaintext when the key is not given
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A2 E3 B2 A3 A1 C2 G1 A3 D1 H2 B3 F2 F1 B1 F2 C3 F2 F2 C2 E3 E3 F2 B1 H1 H2 H1 C1 B3 F3
G1 F2 G1 C2 H1 A3 D1 D2 A3 B2 F2 F2 B2 C2 C1 F1 G1 F2 B3 F2 C2 G2 F3 F1 B1 H1 D1 D1 H1 B3 F3
B2 F3 C2 G2 F3 B2 B1 G2 G3 C1 F3 B2 F2 C2 G2 F1 F3 C1 A3 E3 C1 F3 C2 A3 B1 H1 A3

Figure 2: Our transcription of Dorabella which encodes the orientation and semicircle count of each symbol.

is called decipherment. Common measures of the
decipherment success are: (1) decipherment accu-
racy, which is the percentage of correctly recovered
symbols in the ciphertext; and (2) key accuracy,
which is the percentage of correctly mapped sym-
bols in the cipher alphabet. Decipherment accuracy
is typically higher than key accuracy, because more
frequent symbols are more likely to be deciphered
correctly.

Computational decipherment methods are based
on heuristic search algorithms guided by statistical
n-gram language models (Nuhn et al., 2013; Hauer
et al., 2014). An n-gram language model estimates
the probability of a token in a sequence based on
the previous n−1 tokens. If the token is near the
beginning of the string, a special start token is used
in place of the missing prior tokens. Through re-
peated applications of this model, the probability
of the entire sequence can be estimated. Perplexity
is a function of probability, which measures the
ability of a statistical model to predict a particu-
lar sequence. Lower perplexity indicates that the
model is “less surprised” by the data, and so is
said to be a better fit. Tokens may be characters
or words in natural language, or symbols used in
music notation. For compatibility with prior work
which models sequences of characters in natural
language, we refer to a language model over music
notation as a character language model.

3 Prior Work

This section describes prior works that use n-gram
models for composition, and prior attempts to solve
the Dorabella cipher.

3.1 N-Gram models for composition

N-gram models have been applied to study the
structure of music (Manzara et al., 1992) and to
compose music. N-gram models in music research
and composition range from serial notes, to chords,
to pitch and duration pairs (Lo and Lucas, 2006;
Wołkowicz et al., 2008), and more complicated
structures (McCormack, 1996).

Manzara et al. (1992) investigate the entropy of
music from an n-gram perspective. They test how
well people can guess the next note, and compare

that to n-gram models of Bach’s four part Chorale.
They report that people outperform n-gram mod-
els, and that both people and n-gram models have
relatively consistent performance.

McCormack (1996) employs n-grams and sim-
ilar Bayesian structures to compose music. His
focus was on Markov chains, which are related
to n-gram language models and perplexity estima-
tions.

Lo and Lucas (2006) combine genetic algorithms
and n-gram language models to evolve musical se-
quences. The n-gram models act as fitness func-
tions to guide the creation of musical sequences
that have lower perplexity given an n-gram lan-
guage model. In addition, they use their models to
identify composers.

Wołkowicz et al. (2008) also use n-grams to iden-
tify composers. They process MIDI files and pro-
duce n-grams of pitch and duration tuples. They
achieve up to 84% accuracy at identifying com-
posers using a large corpus of 10000 notes of each
composer’s work, and about 54% accuracy when
using only 100 notes, which is at a similar level of
accuracy as Lo and Lucas (2006).

3.2 Dorabella Cipher
The earliest computational attempt at solving the
Dorabella Cipher that we are aware of is that of
Sams (1970). He applies statistical analysis based
on character frequencies and brute force cryptanal-
ysis. The work considers the assumptions that the
cipher encrypts English text which may be partly
phoneticized, is not strictly monoalphabetic, and
may involve multiple layers of encryption. The
author ultimately proposes the following solution
to the cipher: “Larks! It’s chaotic, but a cloak
obscures my new letters, a, b. I own the dark makes
E. E. sigh when you are too long gone.”

Santa and Santa (2010) provide an overview
of Elgar’s work on cryptography, focusing on the
“enigma” that he implied to be hidden within his
musical piece Variations on a Theme. They note
the connections Elgar made between that piece and
Dorabella, neither of which has been conclusively
solved. despite this and other “hints” from Elgar.
In particular, they raise the possibility of mathemat-
ical concepts being used in Dorabella, specifically
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the constant π, as well as the encoding of scale-
degrees with numerical values.

As well-known techniques, such as frequency
analysis, have not proven effective on Dorabella,
Schmeh (2018) proposes to consider less common
techniques. These include vowel detection and a
frequency-based consonant identification method.
The author applies these techniques both to Dora-
bella, and on a control plaintext. He does not pro-
pose a solution to Dorabella, but demonstrates that
these methods can distinguish between vowels and
consonants in the control cipher. With the same
techniques, he attempts to identify some Dorabella
symbols as vowels or consonants. He also notes
that certain statistical properties of Dorabella are
consistent with English text.

Packwood (2020) proposes a natural language
solution to Dorabella. The method is complex, and
involves breaking the cipher into discrete blocks,
among which patterns can be observed, and an elab-
orate system of transposition. The author further
speculates that the cipher also conceals a musical
composition, but makes no attempt at a musical
decipherment.

Hauer et al. (2021) experiment with several
monoalphabetic substitution cipher solvers to de-
cipher music. They rely on a corpus of Bach and
Elgar MIDI files, and try to decipher synthetic mu-
sic ciphers using a pitch/duration language model,
but the results are quite low compared to textual
ciphers. They conclude that it is unlikely that Dora-
bella represents music encoded using an alphabet
of pitch and duration.

4 Methodology

In this section, we describe our methodology, in-
cluding datasets for training language models.

4.1 Transcribing Dorabella

The first step is to render Dorabella into a machine-
readable form. In order to establish such a tran-
scription, we compared five different manual tran-
scriptions attempts, including Schmeh (2018), Hart-
meier (2017), Pelling (2012), as well as transcrip-
tions by two of the authors of this paper. A majority
consensus transcription is shown in Figure 2. It
consists of 87 tokens made of an uppercase letter
encoding the symbol orientation, followed by the
number of semicircles. There are 8 possible ori-
entations (A-H), while the number of semicircles
ranges from 1 to 3.

4.2 Pitch-Duration Dataset and Encoding

We use the music dataset created by Hauer et al.
(2021). The dataset was created from MIDI files,
a form of digitally representing musical compo-
sition which encodes pitch, pitch amplitude, and
duration over a timeline, usually including metric
and tempo information. The files represent music
from both Elgar and Bach. The Elgar data consists
of 29 files containing a total of 1.2M notes, while
the Bach data consists of 295 files containing 3.7M
notes. We include the Bach data due to the rela-
tively small size of the Elgar corpus; this increases
the total size of our data by a factor of four. Each
dataset is divided into training and testing splits.
This is done to ensure that experimental results are
generalizable to data not used to provide statistical
information for the models used by the decipher-
ment algorithms. The test set is further divided into
87-note sequences, the same length as Dorabella.

Hauer et al. (2021) assume that enciphered mu-
sic must, before encipherment, be represented in
some serial, symbolic notation. To this end, they
transpose all music into the key of C major, and
use only one octave. All symbols except notes (e.g.
rests) are removed. All notes are normalized to one
of three durations: quarter note, shorter than a quar-
ter note, or longer than a quarter note. Further, all
notes were normalized to one of the eight most fre-
quent notes: A, B, C, D, E, F, F], and G. Thus, just
as each Dorabella cipher symbol has one of three
semicircle counts and one of eight orientations, giv-
ing a theoretical vocabulary of 24 symbols, the
encoding assigns to each symbol one of three du-
rations and one of eight notes, yielding 24 distinct
symbols. While there is much more information
encoded in musical notation, we are constrained
by the 24-symbol alphabet of the cipher. For ex-
ample, if we assumed that some cipher symbols
represent rests, we would need to further reduce
the already limited range of notes that the cipher
can represent. While this encoding was designed to
match the form of the Dorabella cipher, we present
a more principled approach in Section 4.4.

4.3 English Dataset

To assess the ability of our statistical models to
fit music, we induce models of both music and
English, and compare the fitness of our modelling
method on different types of data. We use the
English language dataset of Hauer et al. (2021),
which is a subset of the letters of Jane Austen. This
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corpus was deemed appropriate since it consists
of written epistolary correspondences, which is
the hypothesized domain of Dorabella. The text
was first processed to remove all non-alphabetic
characters, including white space. 300 excerpts
from the corpus were selected at random, each
consisting of a sequence of 87 characters. We use
this set of 300 texts for the perplexity measurement
experiment described in Section 5.

4.4 Melody Dataset

We experiment with the CANTUS corpus of folk
music (Lacoste, 2012). We conjecture that Elgar
would be more likely to create something that re-
flected contemporary styles of folk music rather
than the more complex, and often more chromat-
ically adventurous music of his own. This leads
us to consider musical databases that are limited
to a single line of music, as well as to simplify the
issues around key signature, meter, rhythm, and
other factors. Our melody corpus reduces all exam-
ples to the common key of C. We also chose to not
attempt to model rhythms, dynamics, articulations,
and other components, looking mainly at pitch, and
assuming 4/4 meter. There are other composition
decisions which could have been made. Given the
extremely small set of symbols, and the short length
of the cipher, we necessarily had to make some sim-
plifying assumptions, and we did so based on our
intuitions regarding what setting would produce
the most natural-sounding composition.

Our melody dataset is from the CANTUS
Database of chants and melodies (Lacoste, 2012;
Helsen and Lacoste, 2011), an online searchable
database that encodes melodies as sequences of
pitches without including their durations.1 Table
1 shows the sources of melodies in the CANTUS
dataset and their average length. The melodies in
CANTUS are monophonic, and most include notes
in the range of F3 to D6. Since there are only 17
distinct notes in our subset of CANTUS, we inter-
polate the range from A3 to E6 to yield 24 symbols
used to decipher Dorabella: A3, B[3, B3, F3, G3,
A4, B[4, B4, C4, D4, E4, F4, G4, A5, B[5, B5, C5,
D5, E5, F5, G5, C6, D6, E6. Because of the smaller
alphabet and vocabulary of the melody dataset, we
expect it to have lower perplexity, which should
lead to better results than with the dataset described
in Section 4.2.

1An example melody http://cantusindex.org/
melody/msch001

Name Dataset Melodies Length
Gloria mbos 102 8.9
Kyrie mmel 226 8.7

Agnus Dei mscb 267 8.9
Alleluia msch 409 34.9
Hymn msta 344 49.4

Sanctus mtha 228 9.0
All 1576

Table 1: Melody datasets extracted from CANTUS (La-
coste, 2012; Helsen and Lacoste, 2011)

Our training corpus is created by randomly sam-
pling 467 melodies without replacement. Our
datasets, code, and compositions are released at:
https://zenodo.org/record/4764819

4.5 Decipherment

As our decipherment method for enciphered mu-
sic, we use the solver of Norvig (2009), which
we refer to as HILLCLIMBC.2 We selected it for
its effectiveness on deciphering monoalphabetic
substitution ciphers, even when word boundaries
are not preserved in the cipher. This is important,
as our encoding of music has no analogy to word
boundaries, and no such boundaries are indicated
in Dorabella. The solver maximizes the probabil-
ity of the decipherment as estimated by a trigram
character language model. Starting from a random
initial key, HILLCLIMBC applies a hill climbing al-
gorithm as a heuristic search strategy. At each step,
many successor keys are generated by applying per-
mutations to the current key; whichever successor
gives the greatest increase in probability (equiva-
lently, the greatest decrease in perplexity) becomes
the key in the next iteration. We run the algorithm
for 4000 iterations, with 90 random restarts. The
decipherment with the lowest perplexity across all
iterations is returned.

5 Decipherment Results

Table 2 shows the decipherment results on a test set
of 300 distinct melody samples, sampled without
replacement from the corresponding training set.
Clearly, the results on the melody dataset are much
better than those on the pitch/duration datasets,
which in turn are better for Bach than for Elgar.
The mean key accuracy across all examples in the
melody dataset is 50%, that is, half of the key sym-
bols are correct. Approximately half of ciphers

2http://norvig.com/ngrams

36



Source Key Acc Dec Acc
pitch/duration (Elgar) 7.0% 12.0%
pitch/duration (Bach) 26.5% 32.0%
melody (CANTUS) 50.0% 54.5%

Table 2: HILLCLIMBC results on music ciphers of
length 20,000.

were deciphered with 70% decipherment accuracy
or higher, and nearly one third of ciphers were de-
ciphered entirely correctly. This suggests that our
approach is effective for melody decipherment.

One reason for the lower accuracy on the
pitch/duration datasets may be their quality. The
original MIDI files were created by multiple au-
thors, leading to a low consistency in musical tran-
scription. In addition, the files are polyphonic; even
for piano music, they often have separate chan-
nels for each hand. On the other hand, our melody
dataset is monophonic and consistently transcribed.

Dataset Average Perplexity
English (Austen) 16.2
pitch/duration (Elgar) 24.4
pitch/duration (Bach) 24.5
melody (CANTUS) 5.6

Table 3: Average perplexity using a trigram character
language model.

Another possible explanation for the divergent
performance could be the encoding. Table 3 shows
the perplexity of different datasets. We used tri-
gram language character models with modified
Kneser-Ney smoothing and discounts. The rela-
tively high perplexity values of the pitch/duration
datasets suggests that the pitch-only encoding
may be better suited to modelling music than the
pitch/duration encoding. Indeed, based on these re-
sults, predicting the next note of a melody is easier
than than predicting the next English character in a
sentence.

6 Composition from Decipherment

In this section we apply our algorithm to the Dora-
bella cipher, and take the resulting melody as a
basis for a composition. In particular, we manually
analyze the output for musical content, and modify
it according to subjective musical tastes. This cre-
ative process is guided by the familiarity with the
composer’s style, and is not itself replicable.

E6 B5 A4 B4 B3 F4 D6 B4 E5 F5 G5 G4 C4 C5 G4 A5 G4 G4 F4 B5 B5 G4 C5 D5 F5 D5

B[4 G5 D4 D6 G4 D6 F4 D5 B4 E5 C6 B4 A4 G4 G4 A4 F4 B[4 C4 D6 G4 G5 G4 F4 E4

D4 C4 C5 D5 E5 E5 D5 G5 D4 A4 D4 F4 E4 D4 A4 C5 E4 A3 B[4 D4 A4 G4 F4 E4 C4

D4 B[4 B4 B5 B[4 D4 F4 B4 C5 D5 B4

Figure 3: A decipherment of Dorabella as melody.

Figure 3 shows our highest-scoring decipher-
ment of Dorabella assuming 4/4 time. Figure 4 de-
picts its musical transcription, which was obtained
by applying HILLCLIMBC with a language model
derived from the melody dataset (467 samples).
This decipherment attempt has some interesting
musical features. The notes in Figure 4 seem at
times to imply logical harmonic progressions. In
the second half, there are even moments of motivic
repetition, albeit not exact, which evoke a musical
composition.
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Figure 4: Note output from Dorabella

After manual analysis we decided to realign the
notes from the 4/4 meter to the 3/4 meter, as this
appears to fit better the contours and implied har-
monic progression. Surprisingly, the melody seems
to be match two 16-bar 3/4 phrases, except for a
premature end in the second phrase. Considering
that we only use quarter-note rhythms, this could
be an illusion, but the resulting musical piece is
intriguing. In the spirit of the creative process, we
also decided to relax the strict matching of the de-
cipherment symbols into notes.

Figure 5 shows the final version of the output
in which some notes (shown in red) have been
altered or added in order to create a cadential con-

Figure 5: Adjusted output, with chords. Notes which
have been modified from the output in Figure 4 are
color-coded red.
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clusion. Interestingly, our altered 32-bar segment
features a highly disjunct first 16-bar phrase, with
an altered pitch (B-flat) implying a potential trans-
position, and a second phrase that is much more
lyrical and based on smaller step-wise intervals,
complete with the “repeated motive.” Upon adding
the implied harmonic accompaniment, we can see
that in some cases there even seem to be an implied
V-I cadences, such as between mm. 16-17, mm.
24-25, and the final added measures. Adding some
phrasing and interesting timbres, as well as chords
based on the implied harmony, gives us the audio
rendering3 shown in Figure 5.

It is important to point out several caveats to this
seemingly encouraging result. First and foremost,
any analysis of musical composition necessarily
has subjective elements. Second, we assume that
rhythmic values are not encoded in the cipher, and
limit the decipherment to quarter-notes. It is also
possible that the score may not be connected to
common practice notation or even diatonic pitches
at all. For example, these could be referring to a
very specific set of church bells, or perhaps some
other kind of instrument or sonic contraption, or
even just rhythm.

7 Conclusions

Although we do not claim to have solved the mys-
tery of Dorabella, our process produced a listenable
melody, which opens up interesting avenues of in-
vestigation. In the future, we plan to experiment
with different corpora and musical attributes, such
as rhythm only. Our approach represents a creative
way to generate new forms of musical melodies.
What seems certain is that Elgar’s intention to con-
found left us with a tantalizing riddle that invites
further speculation in the future.
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