@inproceedings{appelgren-lascarides-2021-symbol,
title = "Symbol Grounding and Task Learning from Imperfect Corrections",
author = "Appelgren, Mattias and
Lascarides, Alex",
editor = "Alikhani, Malihe and
Blukis, Valts and
Kordjamshidi, Parisa and
Padmakumar, Aishwarya and
Tan, Hao",
booktitle = "Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.splurobonlp-1.1",
doi = "10.18653/v1/2021.splurobonlp-1.1",
pages = "1--10",
abstract = "This paper describes a method for learning from a teacher{'}s potentially unreliable corrective feedback in an interactive task learning setting. The graphical model uses discourse coherence to jointly learn symbol grounding, domain concepts and valid plans. Our experiments show that the agent learns its domain-level task in spite of the teacher{'}s mistakes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="appelgren-lascarides-2021-symbol">
<titleInfo>
<title>Symbol Grounding and Task Learning from Imperfect Corrections</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mattias</namePart>
<namePart type="family">Appelgren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Lascarides</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valts</namePart>
<namePart type="family">Blukis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parisa</namePart>
<namePart type="family">Kordjamshidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aishwarya</namePart>
<namePart type="family">Padmakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a method for learning from a teacher’s potentially unreliable corrective feedback in an interactive task learning setting. The graphical model uses discourse coherence to jointly learn symbol grounding, domain concepts and valid plans. Our experiments show that the agent learns its domain-level task in spite of the teacher’s mistakes.</abstract>
<identifier type="citekey">appelgren-lascarides-2021-symbol</identifier>
<identifier type="doi">10.18653/v1/2021.splurobonlp-1.1</identifier>
<location>
<url>https://aclanthology.org/2021.splurobonlp-1.1</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>1</start>
<end>10</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Symbol Grounding and Task Learning from Imperfect Corrections
%A Appelgren, Mattias
%A Lascarides, Alex
%Y Alikhani, Malihe
%Y Blukis, Valts
%Y Kordjamshidi, Parisa
%Y Padmakumar, Aishwarya
%Y Tan, Hao
%S Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F appelgren-lascarides-2021-symbol
%X This paper describes a method for learning from a teacher’s potentially unreliable corrective feedback in an interactive task learning setting. The graphical model uses discourse coherence to jointly learn symbol grounding, domain concepts and valid plans. Our experiments show that the agent learns its domain-level task in spite of the teacher’s mistakes.
%R 10.18653/v1/2021.splurobonlp-1.1
%U https://aclanthology.org/2021.splurobonlp-1.1
%U https://doi.org/10.18653/v1/2021.splurobonlp-1.1
%P 1-10
Markdown (Informal)
[Symbol Grounding and Task Learning from Imperfect Corrections](https://aclanthology.org/2021.splurobonlp-1.1) (Appelgren & Lascarides, splurobonlp 2021)
ACL