@inproceedings{korpan-epstein-2021-plan,
title = "Plan Explanations that Exploit a Cognitive Spatial Model",
author = "Korpan, Raj and
Epstein, Susan L.",
editor = "Alikhani, Malihe and
Blukis, Valts and
Kordjamshidi, Parisa and
Padmakumar, Aishwarya and
Tan, Hao",
booktitle = "Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.splurobonlp-1.7",
doi = "10.18653/v1/2021.splurobonlp-1.7",
pages = "60--70",
abstract = "Ideally, people who navigate together in a complex indoor space share a mental model that facilitates explanation. This paper reports on a robot control system whose cognitive world model is based on spatial affordances that generalize over its perceptual data. Given a target, the control system formulates multiple plans, each with a model-relevant metric, and selects among them. As a result, it can provide readily understandable natural language about the robot{'}s intentions and confidence, and generate diverse, contrastive explanations that reference the acquired spatial model. Empirical results in large, complex environments demonstrate the robot{'}s ability to provide human-friendly explanations in natural language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="korpan-epstein-2021-plan">
<titleInfo>
<title>Plan Explanations that Exploit a Cognitive Spatial Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raj</namePart>
<namePart type="family">Korpan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susan</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Epstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valts</namePart>
<namePart type="family">Blukis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parisa</namePart>
<namePart type="family">Kordjamshidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aishwarya</namePart>
<namePart type="family">Padmakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Ideally, people who navigate together in a complex indoor space share a mental model that facilitates explanation. This paper reports on a robot control system whose cognitive world model is based on spatial affordances that generalize over its perceptual data. Given a target, the control system formulates multiple plans, each with a model-relevant metric, and selects among them. As a result, it can provide readily understandable natural language about the robot’s intentions and confidence, and generate diverse, contrastive explanations that reference the acquired spatial model. Empirical results in large, complex environments demonstrate the robot’s ability to provide human-friendly explanations in natural language.</abstract>
<identifier type="citekey">korpan-epstein-2021-plan</identifier>
<identifier type="doi">10.18653/v1/2021.splurobonlp-1.7</identifier>
<location>
<url>https://aclanthology.org/2021.splurobonlp-1.7</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>60</start>
<end>70</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Plan Explanations that Exploit a Cognitive Spatial Model
%A Korpan, Raj
%A Epstein, Susan L.
%Y Alikhani, Malihe
%Y Blukis, Valts
%Y Kordjamshidi, Parisa
%Y Padmakumar, Aishwarya
%Y Tan, Hao
%S Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F korpan-epstein-2021-plan
%X Ideally, people who navigate together in a complex indoor space share a mental model that facilitates explanation. This paper reports on a robot control system whose cognitive world model is based on spatial affordances that generalize over its perceptual data. Given a target, the control system formulates multiple plans, each with a model-relevant metric, and selects among them. As a result, it can provide readily understandable natural language about the robot’s intentions and confidence, and generate diverse, contrastive explanations that reference the acquired spatial model. Empirical results in large, complex environments demonstrate the robot’s ability to provide human-friendly explanations in natural language.
%R 10.18653/v1/2021.splurobonlp-1.7
%U https://aclanthology.org/2021.splurobonlp-1.7
%U https://doi.org/10.18653/v1/2021.splurobonlp-1.7
%P 60-70
Markdown (Informal)
[Plan Explanations that Exploit a Cognitive Spatial Model](https://aclanthology.org/2021.splurobonlp-1.7) (Korpan & Epstein, splurobonlp 2021)
ACL
- Raj Korpan and Susan L. Epstein. 2021. Plan Explanations that Exploit a Cognitive Spatial Model. In Proceedings of Second International Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics, pages 60–70, Online. Association for Computational Linguistics.