@inproceedings{zhang-etal-2021-comparing,
title = "Comparing Span Extraction Methods for Semantic Role Labeling",
author = "Zhang, Zhisong and
Strubell, Emma and
Hovy, Eduard",
editor = "Kozareva, Zornitsa and
Ravi, Sujith and
Vlachos, Andreas and
Agrawal, Priyanka and
Martins, Andr{\'e}",
booktitle = "Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.spnlp-1.8",
doi = "10.18653/v1/2021.spnlp-1.8",
pages = "67--77",
abstract = "In this work, we empirically compare span extraction methods for the task of semantic role labeling (SRL). While recent progress incorporating pre-trained contextualized representations into neural encoders has greatly improved SRL F1 performance on popular benchmarks, the potential costs and benefits of structured decoding in these models have become less clear. With extensive experiments on PropBank SRL datasets, we find that more structured decoding methods outperform BIO-tagging when using static (word type) embeddings across all experimental settings. However, when used in conjunction with pre-trained contextualized word representations, the benefits are diminished. We also experiment in cross-genre and cross-lingual settings and find similar trends. We further perform speed comparisons and provide analysis on the accuracy-efficiency trade-offs among different decoding methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2021-comparing">
<titleInfo>
<title>Comparing Span Extraction Methods for Semantic Role Labeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhisong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emma</namePart>
<namePart type="family">Strubell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujith</namePart>
<namePart type="family">Ravi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Priyanka</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we empirically compare span extraction methods for the task of semantic role labeling (SRL). While recent progress incorporating pre-trained contextualized representations into neural encoders has greatly improved SRL F1 performance on popular benchmarks, the potential costs and benefits of structured decoding in these models have become less clear. With extensive experiments on PropBank SRL datasets, we find that more structured decoding methods outperform BIO-tagging when using static (word type) embeddings across all experimental settings. However, when used in conjunction with pre-trained contextualized word representations, the benefits are diminished. We also experiment in cross-genre and cross-lingual settings and find similar trends. We further perform speed comparisons and provide analysis on the accuracy-efficiency trade-offs among different decoding methods.</abstract>
<identifier type="citekey">zhang-etal-2021-comparing</identifier>
<identifier type="doi">10.18653/v1/2021.spnlp-1.8</identifier>
<location>
<url>https://aclanthology.org/2021.spnlp-1.8</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>67</start>
<end>77</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing Span Extraction Methods for Semantic Role Labeling
%A Zhang, Zhisong
%A Strubell, Emma
%A Hovy, Eduard
%Y Kozareva, Zornitsa
%Y Ravi, Sujith
%Y Vlachos, Andreas
%Y Agrawal, Priyanka
%Y Martins, André
%S Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F zhang-etal-2021-comparing
%X In this work, we empirically compare span extraction methods for the task of semantic role labeling (SRL). While recent progress incorporating pre-trained contextualized representations into neural encoders has greatly improved SRL F1 performance on popular benchmarks, the potential costs and benefits of structured decoding in these models have become less clear. With extensive experiments on PropBank SRL datasets, we find that more structured decoding methods outperform BIO-tagging when using static (word type) embeddings across all experimental settings. However, when used in conjunction with pre-trained contextualized word representations, the benefits are diminished. We also experiment in cross-genre and cross-lingual settings and find similar trends. We further perform speed comparisons and provide analysis on the accuracy-efficiency trade-offs among different decoding methods.
%R 10.18653/v1/2021.spnlp-1.8
%U https://aclanthology.org/2021.spnlp-1.8
%U https://doi.org/10.18653/v1/2021.spnlp-1.8
%P 67-77
Markdown (Informal)
[Comparing Span Extraction Methods for Semantic Role Labeling](https://aclanthology.org/2021.spnlp-1.8) (Zhang et al., spnlp 2021)
ACL