@article{yogatama-etal-2021-adaptive,
title = "Adaptive Semiparametric Language Models",
author = "Yogatama, Dani and
de Masson d{'}Autume, Cyprien and
Kong, Lingpeng",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "9",
year = "2021",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2021.tacl-1.22",
doi = "10.1162/tacl_a_00371",
pages = "362--373",
abstract = "We present a language model that combines a large parametric neural network (i.e., a transformer) with a non-parametric episodic memory component in an integrated architecture. Our model uses extended short-term context by caching local hidden states{---}similar to transformer-XL{---}and global long-term memory by retrieving a set of nearest neighbor tokens at each timestep. We design a gating function to adaptively combine multiple information sources to make a prediction. This mechanism allows the model to use either local context, short-term memory, or long-term memory (or any combination of them) on an ad hoc basis depending on the context. Experiments on word-based and character-based language modeling datasets demonstrate the efficacy of our proposed method compared to strong baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yogatama-etal-2021-adaptive">
<titleInfo>
<title>Adaptive Semiparametric Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dani</namePart>
<namePart type="family">Yogatama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cyprien</namePart>
<namePart type="family">de Masson d’Autume</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingpeng</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present a language model that combines a large parametric neural network (i.e., a transformer) with a non-parametric episodic memory component in an integrated architecture. Our model uses extended short-term context by caching local hidden states—similar to transformer-XL—and global long-term memory by retrieving a set of nearest neighbor tokens at each timestep. We design a gating function to adaptively combine multiple information sources to make a prediction. This mechanism allows the model to use either local context, short-term memory, or long-term memory (or any combination of them) on an ad hoc basis depending on the context. Experiments on word-based and character-based language modeling datasets demonstrate the efficacy of our proposed method compared to strong baselines.</abstract>
<identifier type="citekey">yogatama-etal-2021-adaptive</identifier>
<identifier type="doi">10.1162/tacl_a_00371</identifier>
<location>
<url>https://aclanthology.org/2021.tacl-1.22</url>
</location>
<part>
<date>2021</date>
<detail type="volume"><number>9</number></detail>
<extent unit="page">
<start>362</start>
<end>373</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Adaptive Semiparametric Language Models
%A Yogatama, Dani
%A de Masson d’Autume, Cyprien
%A Kong, Lingpeng
%J Transactions of the Association for Computational Linguistics
%D 2021
%V 9
%I MIT Press
%C Cambridge, MA
%F yogatama-etal-2021-adaptive
%X We present a language model that combines a large parametric neural network (i.e., a transformer) with a non-parametric episodic memory component in an integrated architecture. Our model uses extended short-term context by caching local hidden states—similar to transformer-XL—and global long-term memory by retrieving a set of nearest neighbor tokens at each timestep. We design a gating function to adaptively combine multiple information sources to make a prediction. This mechanism allows the model to use either local context, short-term memory, or long-term memory (or any combination of them) on an ad hoc basis depending on the context. Experiments on word-based and character-based language modeling datasets demonstrate the efficacy of our proposed method compared to strong baselines.
%R 10.1162/tacl_a_00371
%U https://aclanthology.org/2021.tacl-1.22
%U https://doi.org/10.1162/tacl_a_00371
%P 362-373
Markdown (Informal)
[Adaptive Semiparametric Language Models](https://aclanthology.org/2021.tacl-1.22) (Yogatama et al., TACL 2021)
ACL