@article{culkin-etal-2021-iterative,
title = "Iterative Paraphrastic Augmentation with Discriminative Span Alignment",
author = "Culkin, Ryan and
Hu, J. Edward and
Stengel-Eskin, Elias and
Qin, Guanghui and
Durme, Benjamin Van",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "9",
year = "2021",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2021.tacl-1.30/",
doi = "10.1162/tacl_a_00380",
pages = "494--509",
abstract = "We introduce a novel paraphrastic augmentation strategy based on sentence-level lexically constrained paraphrasing and discriminative span alignment. Our approach allows for the large-scale expansion of existing datasets or the rapid creation of new datasets using a small, manually produced seed corpus. We demonstrate our approach with experiments on the Berkeley FrameNet Project, a large-scale language understanding effort spanning more than two decades of human labor. With four days of training data collection for a span alignment model and one day of parallel compute, we automatically generate and release to the community 495,300 unique (Frame,Trigger) pairs in diverse sentential contexts, a roughly 50-fold expansion atop FrameNet v1.7. The resulting dataset is intrinsically and extrinsically evaluated in detail, showing positive results on a downstream task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="culkin-etal-2021-iterative">
<titleInfo>
<title>Iterative Paraphrastic Augmentation with Discriminative Span Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Culkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="given">Edward</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elias</namePart>
<namePart type="family">Stengel-Eskin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanghui</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="given">Van</namePart>
<namePart type="family">Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We introduce a novel paraphrastic augmentation strategy based on sentence-level lexically constrained paraphrasing and discriminative span alignment. Our approach allows for the large-scale expansion of existing datasets or the rapid creation of new datasets using a small, manually produced seed corpus. We demonstrate our approach with experiments on the Berkeley FrameNet Project, a large-scale language understanding effort spanning more than two decades of human labor. With four days of training data collection for a span alignment model and one day of parallel compute, we automatically generate and release to the community 495,300 unique (Frame,Trigger) pairs in diverse sentential contexts, a roughly 50-fold expansion atop FrameNet v1.7. The resulting dataset is intrinsically and extrinsically evaluated in detail, showing positive results on a downstream task.</abstract>
<identifier type="citekey">culkin-etal-2021-iterative</identifier>
<identifier type="doi">10.1162/tacl_a_00380</identifier>
<location>
<url>https://aclanthology.org/2021.tacl-1.30/</url>
</location>
<part>
<date>2021</date>
<detail type="volume"><number>9</number></detail>
<extent unit="page">
<start>494</start>
<end>509</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Iterative Paraphrastic Augmentation with Discriminative Span Alignment
%A Culkin, Ryan
%A Hu, J. Edward
%A Stengel-Eskin, Elias
%A Qin, Guanghui
%A Durme, Benjamin Van
%J Transactions of the Association for Computational Linguistics
%D 2021
%V 9
%I MIT Press
%C Cambridge, MA
%F culkin-etal-2021-iterative
%X We introduce a novel paraphrastic augmentation strategy based on sentence-level lexically constrained paraphrasing and discriminative span alignment. Our approach allows for the large-scale expansion of existing datasets or the rapid creation of new datasets using a small, manually produced seed corpus. We demonstrate our approach with experiments on the Berkeley FrameNet Project, a large-scale language understanding effort spanning more than two decades of human labor. With four days of training data collection for a span alignment model and one day of parallel compute, we automatically generate and release to the community 495,300 unique (Frame,Trigger) pairs in diverse sentential contexts, a roughly 50-fold expansion atop FrameNet v1.7. The resulting dataset is intrinsically and extrinsically evaluated in detail, showing positive results on a downstream task.
%R 10.1162/tacl_a_00380
%U https://aclanthology.org/2021.tacl-1.30/
%U https://doi.org/10.1162/tacl_a_00380
%P 494-509
Markdown (Informal)
[Iterative Paraphrastic Augmentation with Discriminative Span Alignment](https://aclanthology.org/2021.tacl-1.30/) (Culkin et al., TACL 2021)
ACL