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Abstract

Systems for Open-Domain Question An-
swering (OpenQA) generally depend on a
retriever for finding candidate passages in
a large corpus and a reader for extracting
answers from those passages. In much recent
work, the retriever is a learned component that
uses coarse-grained vector representations of
questions and passages. We argue that this
modeling choice is insufficiently expressive
for dealing with the complexity of natural
language questions. To address this, we define
ColBERT-QA, which adapts the scalable
neural retrieval model ColBERT to OpenQA.
ColBERT creates fine-grained interactions
between questions and passages. We propose
an efficient weak supervision strategy that
iteratively uses ColBERT to create its own
training data. This greatly improves OpenQA
retrieval on Natural Questions, SQuAD,
and TriviaQA, and the resulting system
attains state-of-the-art extractive OpenQA
performance on all three datasets.

1 Introduction

The goal of Open-Domain Question Answering
(OpenQA; Voorhees and Tice, 2000) is to find an-
swers to factoid questions in potentially massive
unstructured text corpora. Systems for OpenQA
typically depend on two major components: a re-
trieval model to find passages that are relevant to
the user’s question and a machine reading model
to try to find an answer to the question in the re-
trieved passages. At its best, this should combine
the power and scalability of current information
retrieval (IR) models with recent advances in ma-
chine reading comprehension (MRC). However, if
the notions of relevance embedded in the IR model
fail to align with the requirements of question an-
swering, the MRC model will not reliably see the
best passages and the system will perform poorly.

Many prior approaches to OpenQA rely on
classical IR models (e.g., BM25; Robertson et al.,
1995) whose notions of relevance are not tailored
to questions. In effect, this reduces the OpenQA

problem to few-passage MRC, imposing a hard
limit on the quality of the passages seen by the
MRC model. Recent work has sought to address
this problem by learning to retrieve passages.
For instance, Guu et al. (2020) and Karpukhin
et al. (2020) jointly train vector representations
of both passages and questions to support
similarity-based retrieval. This has led to
state-of-the-art performance on multiple OpenQA
datasets.

However, existing OpenQA retrievers exhibit
two major limitations. First, the representa-
tions learned by these models are relatively
coarse: They encode each passage into a single
high-dimensional vector and estimate relevance
via one dot-product. We argue this is not
expressive enough for reliably matching complex
natural-language questions to their answers. Sec-
ond, existing systems present substantial tradeoffs
when it comes to supervision: they expect
hand-labeled ‘‘positive’’ passages, which may
not always exist; or they use simple models like
BM25 to sample ‘‘positives’’ and ‘‘negatives’’
for training, which may provide weak positives
and unchallenging negatives; or they conduct
retrieval within the training loop, which requires
frequently re-indexing a large corpus (e.g., tens or
hundreds of times in REALM; Guu et al., 2020)
or a frozen document encoder that cannot adapt
to the task (e.g., as in RAG; Lewis et al., 2020).
We argue that supervision methods in this space
need to be more flexible and more scalable.

We tackle both limitations with ColBERT-QA.1

To address the first problem, we leverage the
recent neural retrieval model ColBERT (Khattab
and Zaharia, 2020) to create an end-to-end system
for OpenQA. Like other recent neural IR models,
ColBERT encodes both the question and the
document using BERT (Devlin et al., 2019).
However, a defining characteristic of ColBERT is
that it explicitly models fine-grained interactions

1https://github.com/stanfordnlp/ColBERT-QA.
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Figure 1: Sub-figure (a) depicts the ColBERT retrieval
model (Khattab and Zaharia, 2020). ColBERT en-
codes questions and passages into multiple embeddings
and allows those to interact via a scalable maximum-
similarity (MaxSim) mechanism. Sub-figure (b) illus-
trates our proposed ColBERT-QA training strategy:
We use an existing retrieval model to collect the top-k
passages for every training question and, with a simple
heuristic, sort these passages into positive (+ve) and
negative (–ve) examples, using those to train another,
more effective retriever. This process is applied thrice,
and the resulting ColBERT-QA is used in the OpenQA
pipeline.

(Figure 1(a)) between the question and document
representations (§3), in particular by comparing
each question term embedding with each passage
term embedding. Crucially, ColBERT does so
while scaling to millions of documents and
maintaining low query latency. We hypothesize
that this form of interaction will permit our model
to be sensitive to the nature of questions without
compromising the OpenQA goal of scaling to
massive datasets.

To address the second problem, we propose
relevance-guided supervision (RGS), an efficient
weak-supervision strategy that allows the re-
triever to guide its own training without frequent
re-indexing or freezing the document encoder.
Instead of expensive pretraining, RGS starts from
an existing weak retrieval model (e.g., BM25)
to collect the top-k passages for every training
question and uses a provided weak heuristic to
sort these passages into positive and negative
examples, relying on the ordering imposed by
the retriever. These examples are then used to
train a more effective retriever, and this process
is applied 2–3 times, with the resulting retriever
deployed in the OpenQA pipeline. Crucially

for scaling to large corpora, RGS only requires
re-indexing the corpus once or twice during train-
ing and correspondingly only retrieves positives
and negatives in 2–3 large batches. In doing so,
RGS permits fine-tuning of the document encoder
during all of training, freeing it to co-adapt with
the query encoder to the task’s complexities.

To assess ColBERT-QA, we report on ex-
periments with Natural Questions (Kwiatkowski
et al., 2019), SQuAD (Rajpurkar et al., 2016),
and TriviaQA (Joshi et al., 2017). We adopt the
OpenQA formulation in which the passage is not
given directly as gold evidence, but rather must be
retrieved, including during training. Further, we
focus on the standard extractive OpenQA setup,
where the reader model extracts the answer string
from one of the retrieved passages. On all three
datasets, ColBERT-QA achieves state-of-the-art
retrieval and extractive OpenQA results.

In summary, our contributions are:

1. We propose relevance-guided supervision
(RGS), an efficient iterative strategy for
fine-tuning a retriever given a weak heuristic.

2. We conduct the first systematic comparison
between ColBERT’s fine-grained interaction
and recent single-vector retrievers like
DPR. We find that ColBERT exhibits
strong transfer learning performance to
new OpenQA datasets and that fine-tuned
ColBERT delivers large gains over existing
OpenQA retrievers.

3. We apply RGS to ColBERT and a
single-vector retriever, and find that each
improves by up to 2.3 and 3.2 points
in Success@20, respectively. Our re-
sulting ColBERT-QA system establishes
state-of-the-art retrieval and downstream
performance.

2 Background & Related Work

2.1 Machine Reading Comprehension

MRC refers to a family of tasks that involve
answering questions about about text passages
(Clark and Etzioni, 2016). In recent work, the
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potential answers are usually selected from a set
of pre-defined options (Hirschman et al., 1999;
Richardson et al., 2013; Iyyer et al., 2014) or
guaranteed to be a substring of the passage (Yang
et al., 2015; Rajpurkar et al., 2016; Kwiatkowski
et al., 2019; Joshi et al., 2017). Here, we start
from the version of the task established by Yang
et al. and Rajpurkar et al., in which the passage
p and question q are MRC inputs and the correct
answer â is a literal substring of p.

2.2 OpenQA
In its most general formulation, the OpenQA task
is defined as follows: Given a large corpus C of
documents (e.g., Wikipedia or a fraction of the
Web) and a question q, the goal is to produce the
correct short answer â. Much of the earliest work
in question answering adopted this paradigm
(Voorhees and Tice, 2000; Ferrucci et al., 2010;
Kushman et al., 2014). Our focus is on the
specific version of OpenQA that is a relaxation of
the standard MRC paradigm (Chen et al., 2017;
Kratzwald and Feuerriegel, 2018): The passage is
no longer given, but rather needs to be retrieved
from a corpus, and the MRC component must
seek answers in the retrieved passages without a
guarantee that an answer is present in any of them.

2.3 Retrieval Models for OpenQA
Mainstream approaches use sparse retrieval
models (e.g., BM25; Robertson and Zaragoza,
2009) and various heuristics (e.g., traversal of
Wikipedia hyperlinks) to retrieve a set of k
passages that are relevant to the question q. This
(closed) set of passages is often re-ranked with
a Transformer encoder (Vaswani et al., 2017) to
maximize precision, as in Wang et al. (2019) and
Yang et al. (2019). Subsequently, mainstream
approaches deploy a reader to read each of these
k passages and return the highest-scoring answer,
â, present as a span in one or more of the k
passages. This approach is represented in Chen
et al. (2017), Min et al. (2019a), and Asai et al.
(2020), among many others.

More recent literature has shown that there is
value in learning the retriever, including ORQA
(Lee et al., 2019), REALM (Guu et al., 2020),
and DPR (Karpukhin et al., 2020). Common
to all three is the BERT two-tower architecture
depicted in Figure 2(a). This architecture encodes
every question q or passage d into a single,
high-dimensional vector and models relevance

Figure 2: A comparison between two extremes of
building neural retrievers with Transformers. On the
left, single-vector models independently encode each
question and passage into a vector and model relevance
as one dot-product. On the right, all-to-all attention
models feed a sequence concatenating the question
and each passage through the encoder, using layers
of self-attention to estimate a relevance score. Dia-
grams adapted from Khattab and Zaharia (2020) with
permission.

via a single dot-product. However, these models
differ substantively in supervision.

Lee et al. (2019) propose the Inverse Close
Task (ICT), a self-supervised task to pretrain these
encoders for retrieval. The question encoder is fed
a random sentence q from the corpus and the pas-
sage encoder is fed a number of context passages,
one of which is the true context of q, and the model
learns to identify the correct context. Guu et al.
(2020) extend this task to retrieval-augmented
language modeling (REALM), where the en-
coders are optimized to retrieve passages that
help with a Masked Language Modeling task
(Devlin et al., 2019). After pretraining, both
ORQA and REALM freeze the passages index
and encoder, and fine-tune the question encoder
to retrieve passages that help a jointly-trained
reader model extract the correct answer. Though
self-supervised, the pretraining procedures of
ORQA and especially REALM are computation-
ally expensive, owing to the amount of data they
must see and as REALM re-indexes the corpus
during pretraining every 500 steps (out of 200k).

Very recently, Karpukhin et al. (2020) propose
a dense passage retriever (DPR) that directly trains
the architecture in Figure 2(a) for retrieval, relying
on a simple approach to collect positives and
negatives. For every question q in the training set,
Karpukhin et al. (2020) recover the hand-labeled
evidence passages (if available; otherwise they use
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Figure 3: The general architecture of ColBERT given a
question and a passage. Diagram adapted from Khattab
and Zaharia (2020) with permission.

BM25-based weak supervision) as positive pas-
sages and sample negatives from the top-k results
by BM25. Importantly, they also use in-batch neg-
atives: Every positive passage in the training batch
is a negative for all but its own question. Using this
simple strategy, DPR considerably outperforms
both ORQA and REALM and established a new
state-of-the-art for extractive OpenQA.

The single-vector approach taken by ORQA,
REALM, and DPR can be very fast but allows for
only shallow interactions between q and d. Khattab
and Zaharia (2020) describe a spectrum of options
for encoding and scoring in neural retrieval, within
which this single-vector paradigm is one extreme.
At the other end of this spectrum is the model
shown in Figure 2(b). Namely, we could feed
BERT a concatenated sequence 〈q, d〉 for every
passage d to be ranked and fine-tune all BERT pa-
rameters against the ranking objective. This allows
for very rich interactions between the query and
document. However, such a model is prohibitively
expensive beyond re-ranking a small set of pas-
sages already retrieved by much cheaper models.

ColBERT (Figure 3) seeks a middle ground: It
separately encodes the query and document into
token-level representations and relies on a scalable
scoring mechanism that creates rich interactions
between q and d. Central to their efficiency, the
interactions are late in that they involve just the
output states of BERT. Essential to their quality,
they are fine-grained in that they cross-match
token representations of q and d against each other.

Our work differs from Khattab and Zaharia
(2020) in two major ways. First, they assume
gold-evidence positives, which may not exist in
OpenQA, and use BM25 negatives, which we
argue is insufficient for an end-to-end retriever.

We propose a simple and efficient strategy,
namely, RGS, that improves training quality.
Second, Khattab and Zaharia (2020) report gains
against a single-vector ablation of their IR system,
but we ask if these gains hold against (concurrent)
state-of-the-art single-vector models in OpenQA,
where a reader could in principle overshadow
retrieval gains. Our work confirms that late
interaction is superior even (if not especially)
in OpenQA: We report considerable gains when
using traditional supervision and even larger gains
with RGS. We also report strong results when
using an out-of-domain transfer learning setting
from IR, which work by Akkalyoncu Yilmaz
et al., (2019) considers but in the context of neural
re-rankers and between standard IR tasks.

2.4 Supervision Paradigms in OpenQA

Broadly, there are two paradigms for training and
evaluating OpenQA models.

Gold-Evidence Supervision. Some OpenQA
datasets supply annotated evidence passages or
human-curated contexts from which the gold an-
swers can be derived. For such datasets, it is natu-
ral to rely on these labels to train the retriever, akin
to typical supervision in many IR tasks. For ex-
ample, Natural Questions contains labeled ‘‘long
answers’’, which DPR uses as positive passages.

However, using gold-evidence labels is not
possible with OpenQA datasets that only supply
question–answer string pairs, like TriviaQA and
WebQuestions (Berant et al., 2013).2 Moreover,
manual annotations might fail to reflect the
richness of passages answering the same question
in the corpus, possibly due to biases in how
passages are found and annotated.

Weak Supervision. Addressing these limi-
tations, weakly supervised OpenQA (Lee et al.,
2019; Guu et al., 2020) supplies its own evidence
passages during training. To do so, it exploits a
question’s short answer string as a crucial super-
vision signal. For a question q in the training set, a
passage that contains q’s answer string â is treated
as a potential candidate for a positive passage. To
weed out spurious matches, additional strategies
are often introduced. We categorize those into
retrieve-and-filter and inner-loop retrieval strate-
gies. In retrieve-and-filter, an existing retriever
and a weak heuristic are essentially intersected to

2TriviaQA provides automatic ‘‘distant supervision’’
labels.
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find promising passages for training. For instance,
Wang et al. (2019) and Karpukhin et al. (2020)
consider only passages highly-ranked by BM25
for q as candidates, where the answer string can
be a more reliable signal.

In inner-loop retrieval, the training loop re-
trieves passages for each example using the model
being fine-tuned. This is conducted by ORQA,
REALM, and RAG (Lewis et al., 2020), ap-
proaching ‘‘end-to-end’’ training of the retriever.
However, such inner-loop retrieval requires major
approximations, since it is infeasible to compute
forward and backward passes over the entire
collection for every training batch. Here, ORQA,
REALM, and RAG freeze their document encoder
(and the indexed vectors) when fine-tuning for
OpenQA, which restricts the adaptability of the
model to this task and/or to new corpora. During
pretraining, REALM does not freeze the document
encoder, but then it has to very frequently re-index
the corpus with training, and the method suffers
quality loss if the index is allowed to become stale.

While existing retrieve-and-filter approaches
reflect the naive term-matching biases of BM25,
and existing inner-loop retrieval strategies restrict
training the document encoder or require frequent
re-indexing and repeated retrieval, RGS offers a
scalable and effective alternative that allows the
retriever itself to collect the training examples
while fine-tuning the document encoder and only
re-indexing 1–2 additional times.

Weak supervision is also a topic in IR. For
instance, Dehghani et al. (2017) explore using
BM25 as a teacher model to train a neural
ranker. Other weak signals in IR include anchor
text (Zhang et al., 2020) and headings text
(MacAvaney et al., 2019), treated as queries for
which the target content is assumed relevant.
Lastly, user interactions have long been used
for supervision in search and recommendation.
However, the gold answer string is unique to
OpenQA and we show it can lead to large quality
gains when combined with an effective retriever.

3 ColBERT-QA

We now describe our ColBERT-QA system.
We propose relevance-guided supervision (RGS)
(§3.2), a scalable strategy that uses the retriever
being trained and a weak heuristic to gather train-
ing examples in a few discrete rounds. As Figure 1
illustrates, we use RGS to fine-tune ColBERT

models in three stages arriving at ColBERT-QA1,
ColBERT-QA2, and ColBERT-QA3.

3.1 The ColBERT Model

ColBERT capitalizes on BERT’s capacity for
contextually encoding text into token-level output
representations. Given a question q, we tokenize
it as [q1, . . . , qn]. The token sequence is truncated
if it is longer than N (e.g., N = 32) or padded
with [MASK] tokens if it is shorter. Khattab
and Zaharia (2020) refer to this padding as
query augmentation and show that it improves
ColBERT’s effectiveness. These tokens are
processed by BERT to obtain a sequence of
output vectors q = [q1, . . . ,qN ].

The encoding of a passage d given tokens
[d1, . . . , dm] follows the same pattern but no aug-
mentation is performed. BERT processes these
into output vectors d = [d1, . . . ,dm]. For both
q and d, we apply a linear layer on top of each
representation to control the output dimension.
Each vector is finally rescaled into unit length.

Let Eq (length N ) and Ed (length m) be the
final vector sequences derived from q and d. The
ColBERT scoring mechanism is given as follows:

Sq,d =

N∑

i=1

m
max
j=1

Eqi · ET
dj

(1)

As illustrated in Figure 3, for every
query embedding, ColBERT computes its
maximum-similarity (MaxSim) score over all
embeddings in the passage, then sums these
scores. This mechanism ‘‘softly’’ matches each
query term with a passage term, producing a
similarity score. Crucially, this computation
scales to billions of tokens corresponding to many
millions of passages, permitting ColBERT to
retrieve passages directly from a massive corpus,
not restricted by the limitations of a ‘‘first-stage’’
retriever (e.g., BM25 or single-vector models).

Overall, ColBERT balances the scalability
of single-vector retrievers and the richness of
BERT’s query–document interaction (§2.3). For
IR, Khattab and Zaharia (2020) show that Col-
BERT outperforms a single-vector retriever and
that, while ColBERT’s precision is comparable
to that of BERT when re-ranking a closed set
of passages (e.g., top-1000 passages retrieved
by BM25), its scalability (allowing full-corpus
retrieval) boosts recall.
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Algorithm 1: Relevance-guided Supervision,
given a weak heuristic H

Input: Training questions Q and corpus C
Input: Supervision heuristic H
Input: Retrieval model R0, number of rounds n
Output: Stronger retriever Rn

1 for round t ← 1 to n do
2 Index corpus C for retrieval with Rt.
3 Rankt ← {Ri.retrieve(q) : q ∈ Q}
4 Pt = {H.getPositives(r[0 : k+])[0 : t]
5 : r ∈ Rankt}
6 Nt = {H.getNegatives(r[0 : k−])
7 : r ∈ Rankt}
8 Tt = {〈q, p, n〉 : q ∈ Q,
9 p ∈ Pt[q], n ∈ Nt[q]}

10 Train a new retriever Rt+1 using triples Tt.
11 end
12 return Final retriever Rn

ColBERT is trained to give positive passages
higher scores than negative passages. More
specifically, it requires triples 〈q, d+, d−〉, where
q is a short query, d+ is a positive passage, and d−

is a negative passage. We score each of d+ and d−

according to Equation (1) given q, and treat this as
a binary classification task, optimizing the model
parameters using a cross-entropy loss. For generic
IR applications, negative passages can be sampled
uniformly from the top-k (e.g., k = 1000) results
for an existing IR system. Positive passages are
more difficult to obtain; IR evaluations generally
require labeled positives as provided by datasets
like MS MARCO Ranking (Nguyen et al., 2016).

3.2 Relevance-Guided Supervision

OpenQA often lacks gold-labeled passages and
instead has short answer strings as supervision
signals. This signal is known to lead to many
spurious matches and existing work tackles this
by either BM25-based retrieve-and-filter, which
can be simplistic, or inner-loop retrieval methods,
which can be expensive and restrictive (§2.4).

Algorithm 1 outlines the proposed RGS, which
seeks to alleviate these limitations by outer-loop
retrieval. RGS takes as input a set of training
question Q, a corpus of passages C, and an initial
weak retrieval model (e.g., BM25). In general,
RGS assumes a task-specific weak heuristic H ,
which in this work indicates whether a passage
contains a question’s short-answer string. RGS
proceeds in n discrete rounds (we set n = 3 in this

work). Each round uses as a building block the
retrieve-and-filter mechanism. For every question
q in the training set, we retrieve R’s top-k results
(Line 3). Then, we take as positives (Line 4)
the highest-ranked t (e.g., t = 3) passages that
contain q’s short answer, restricted to the top-k+

(e.g., k+ = 20) results. Every passage in the
top-k− (potentially with k− � k+) that does not
contain the short answer is treated as a negative
(Line 6). We train a new retriever with these
examples (Line 10), and repeat until all rounds are
complete.

Our key hypothesis is that more effective re-
trieval would collect more accurate and diverse
positives and more challenging and realistic neg-
atives. Importantly, RGS collects positives and
negatives entirely outside the training loop. As
a result, we can flexibly sample positives and
negatives from large depths and we can fine-tune
the entire model (i.e., including the document en-
coder) without having to frequently re-index the
corpus. However, applying this process more than
once on the training set risks overfitting in a way
that rewards a narrow set of positives and drifts
in the negatives it samples. To avoid this, we
use a deterministic split of the training set such
that no model sees the same question during both
training and positive/negative retrieval. To this
end, we create arbitrary equal-sized splits of all
training sets before starting RGS and train each
ColBERT-QA model with 50% of the training
questions.3

To bootstrap ColBERT-QA, §4 selects R0 as
the bag-of-words model BM25. Training yields
ColBERT-QA1, which enables us to establish
ColBERT’s high quality even with simple weak
supervision. We then apply RGS in two rounds,
leading to ColBERT-QA2 and ColBERT-QA3,
whose retrieval quality consistently outperforms
ColBERT-QA1 and ultimately surpasses existing
retrievers by large margins.

3.3 Reader Supervision for OpenQA

Like many OpenQA systems, ColBERT-QA uses
a BERT encoder as a reader. After retrieval, the
reader takes as input a concatenation of a question

3We note that, if desired, it is easy to extend this procedure
to train a ColBERT-QA model on all questions: Train two
independent copies of the supervising model R, one for
each half of the training set, and combine their rankings to
supervise the final model. We leave such improvements to
future work.
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q and a passage d: [CLS] q [SEP] d [SEP],
for each passage d in the top-k set retrieved. The
reader scores each individual short span s in each
passage d. Similar to Lee et al. (2019), we model
the probability of each span s, namely, P (s|d), as
P (s|d) ∝ MLP(hstart(s);hend(s)) for the output
embeddings at the start and end tokens of span s.

To train the reader, we use a set of triples
〈q, d+, d−〉 for every question q in the training set
with positive d+ and negative d−. We collect these
triples using the same general heuristic used for
retrieval training, extracting them from the ranking
model R whose passages we feed to the reader
during inference. We treat every span matching
the answer in d+ as correct for optimization and
minimize the maximum marginal likelihood of the
correct answer, normalizing the span probabilities
over the spans in both documents. For the subset
of spans Ŝ that match the gold answer in d+, we
minimize the loss − log

∑

s∈Ŝ
P (s|d+).

4 Evaluating ColBERT-QA’s Retrieval

ColBERT-QA presents many options for training
the retriever so it extracts the best passages for
the reader. This section explores a range of these
options to address the following key questions.

Our first question concerns ColBERT’s re-
trieval modeling capacity. Can ColBERT’s fine-
grained interactions improve the accuracy of
OpenQA retrieval when tuned for this task? We
consider this under a weak supervision paradigm:
training based on BM25 ranking. In §4.2, we
find that ColBERT is highly effective in this
setting, considerably outperforming classical and
single-vector retrieval.

Our second question concerns an out-of-domain
version of our model. ColBERT is standardly
trained to perform IR tasks. Is this form of
transfer learning from IR sufficient for effective
OpenQA? If so, then this might be an appealingly
modular option for many applications, allowing
system designers to focus on the reader. In §4.3,
we show that ColBERT succeeds in this setting.

Our third set of questions concerns how
best to supervise ColBERT-QA for OpenQA.
In particular, can relevance-guided supervision
improve on standard BM25-based supervision by
capitalizing on the structure and effectiveness of
ColBERT? We find that the answer is ‘‘yes’’;
ColBERT-QA with RGS consistently proves to

be the best method (§4.4), while only requiring
1–2 additional iterations of indexing and training.

4.1 Methods

Similar to Chen et al. (2017), Guu et al. (2020),
and Karpukhin et al. (2020), we study the retrieval
quality in OpenQA by reporting Success@k (S@k
for short), namely, the percentage of questions for
which a retrieved passage (up to depth k) contains
the gold answer string. This metric reflects an
upper bound on the performance of an extractive
reader that reads k passages, assuming it always
locates the answer if present. However, readers
in practice are affected by the quality and number
of passages that contain the answer string and by
passages that do not contain the answer. To eval-
uate this more directly, we suggest employing a
BERT-large model (with ‘‘whole-word-masking’’
pretraining) as a reader, trained for each retriever
as described in §3.3. We report the exact-match
(EM) score corresponding to each retriever–reader
combination on the validation set. Hyperparmeter
tuning is described in Appendix B.

We conduct these experiments on the open
versions of the Natural Questions (NQ), SQuAD
(SQ), and TriviaQA (TQ) datasets. Additional
details on these datasets are in our appendices. Our
retrieval results are summarized in Table 1. To
describe how each model was trained, we report
its sources of positive and negative passages.

4.2 Baselines

The top of Table 1 shows the retrieval quality of
our baselines: BM25 and the recent state-of-the-art
DPR. As Karpukhin et al. (2020) report, DPR
has a considerable edge over BM25 on NQ and
TQ but not SQuAD. The authors attribute the
weak performance on SQuAD to the presence of
high lexical matching between its questions and
evidence passages. Indeed, as Lee et al. (2019) ar-
gues, this might stem from the SQuAD annotators
writing the questions after reading the passage.

Unlike single-vector models, ColBERT is capa-
ble of fine-grained contextual matching between
the words in the question q and the passage d so,
by design, it can softly match contextual represen-
tations of words across q and d. The results on NQ,
TQ, and SQ confirm that fine-grained modeling
exceeds the quality attained with single-vector
representations, consistently outperforming the
baselines across all three datasets.
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Name Source(s) of Success@20 (test) NQ EM (dev)
Positives / Negatives NQ TQ SQ NQ TQ SQ

Baseline Retrievers

BM25 (Anserini) n/a 64.0 77.3 71.4 – – –
DPR (core variant) (Karpukhin et al., 2020) Gold / BM25 78.4 79.4 63.2 – – –
DPR (best variant) (Karpukhin et al., 2020) Gold / BM25 79.4 79.9 71.5 – – –
Single-vector ColBERT (ablation) BM25 78.3 82.8 72.9 – – –

ColBERT-guided Supervision Retrievers (ours)

Out-of-Domain ColBERT-QA MS MARCO 79.1 80.3 76.5 – – –
ColBERT-QA1 BM25 82.9 84.7 82.1 47.1 69.5 49.4
ColBERT-QA2 ColBERT-QA1 85.0‡ 85.3‡ 83.9‡ 48.6 70.2 51.0
ColBERT-QA3 ColBERT-QA2 85.3‡ 85.6‡ 83.7‡ 47.9 69.8 51.8

Table 1: A comparison between baseline retrieval models and approaches for training ColBERT-QA.
A subscript 1, 2, or 3 on ColBERT-QA indicates the number of fine-tuning rounds for OpenQA
retrieval. We report Success@20 on the test sets for comparison with Karpukhin et al. (2020)’s results.
We reserve the test-set EM evaluation for §5. For Success@20, ‡ indicates significant improvement
over ColBERT-QA1; details in the main text.

As described in §2.3, DPR is trained using
in-batch negatives and differs from ColBERT in
a number of ways (e.g., weak vs. gold supervision
on NQ, the depth of negatives used in training).
To better account for differences, we include a
‘‘single-vector ColBERT’’ ablation trained in
the same manner as our ColBERT-QA1 model.
This ablation is similar to the ablation model
evaluated by Khattab and Zaharia (2020) on
MS MARCO and it resembles DPR in that it
uses a dot-product of a 768-dimensional vector
extracted from BERT’s [CLS] token for each
query or passage. Unlike DPR, we do not use
in-batch negatives for this model to more directly
compare with ColBERT.4 The results validate
that fine-grained interaction is a stronger retrieval
choice for OpenQA.

4.3 Evaluating ColBERT out of domain

We now directly examine out-of-domain
ColBERT-QA in Table 1. For this, we train
ColBERT as in Khattab and Zaharia (2020) on
the MS MARCO Ranking dataset, a natural
choice for transfer learning to OpenQA. To
elaborate, it is originally derived from the MRC
dataset with the same name and contains many
question-like search queries as well as other
‘‘free-form’’ queries. Unless otherwise stated,

4Unlike our ColBERT models, we found this single-vector
ablation performs better under re-ranking BM25 top-1000
than under full-corpus retrieval on the validation sets; hence,
we report its re-ranking performance.

we evaluate ColBERT-based models by indexing
and retrieving from the full corpus.

The results in Table 1 show that out-of-domain
ColBERT-QA outperforms BM25 and, in fact, is
already competitive with the DPR retriever across
the three datasets.5 To further contextualize these
results, we note that out-of-domain ColBERT-QA
is more effective than ‘‘zero-shot’’ ORQA and
REALM as reported in Guu et al. (2020): Its
development-set Success@5 exceeds 65% on
NQ whereas both zero-shot ORQA and REALM
are below 40%, on a different random train/dev
split of the same data. We conclude that transfer
learning with models having strong inductive
biases, like ColBERT’s matching, offers a
promising alternative to expensive unsupervised
retrieval pretraining.

4.4 Evaluating Relevance-Guided
Supervision

We now turn our attention to the proposed RGS
strategy, defined in §3.2. RGS seeks to exploit
ColBERT’s high precision to collect high quality
positives and challenging negative and to leverage
its recall to collect richer positives with a wider
coverage of questions. Below, we test how these
hypotheses fare after one, two, and three stages of
fine-tuning. We first focus on Success@20 then

5If we plug ColBERT-QA1’s retriever over this
out-of-domain retrieval, we obtain 45.8, 66.5, and 44.8 EM
(dev) on NQ, TQ, and SQ, respectively.
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consider the EM metric. We start the fine-tuning
of each ColBERT retriever from BERT-base.

We bootstrap ColBERT-QA in a weakly
supervised fashion on each target dataset:
ColBERT-QA1 relies on BM25 for collecting
its positive and negative passages. As reported
in Table 1, it already outperforms every baseline
considered so far, including DPR, by considerable
margins. This strong performance emphasizes
that ColBERT’s capacity to learn from noisy
supervision examples can lead to more accurate
OpenQA retrieval. It also suggests that adapting to
the characteristics of OpenQA-oriented retrieval,
the corpus, and the target QA datasets can
beat high-quality retrieval training for generic
IR. This is evidenced by the consistent gains
of ColBERT-QA1 over the already-effective
out-of-domain model.

Next, we apply RGS by using ColBERT-QA1

itself to create data for further training, yielding
ColBERT-QA2, and take this a step further in us-
ing ColBERT-QA2 to supervise ColBERT-QA3.
As shown, ColBERT-QA2 and ColBERT-QA3

are consistently the most effective, while only
requiring that we index and retrieve positives
and negatives one or two times. In particular,
they raise test-set Success@20 over the next best,
ColBERT-QA1, by up to 0.9–2.4 points on the
three datasets, a sizeable increase in the fraction
of questions that can be answered by an extractive
reader. We conduct a more granular comparison
between ColBERT-QA3 and ColBERT-QA1 in
Table 2, which shows that the gains are even
larger at smaller depths (e.g., up to 5.7 points
in S@1), a property useful in applications where
a reader only has the budget to consume a few
passages per question.6

As mentioned in §3, relying on ColBERT’s
scalability permits us to leverage its accuracy by
applying it to the entire corpus, enabling improved
recall. For instance, if we use ColBERT-QA3 for
re-ranking BM25 top-1000 instead of end-to-end,
full-corpus retrieval, its Success@20 score drops
on the development set from 84.3% to just 80.7%.

It is standard to evaluate OpenQA retrievers
using the occurrence of answers in the retrieved

6With the Wilcoxon signed-rank test (with p < 0.05
and Bonferroni correction) on Success@20, we find that
ColBERT-QA2 and ColBERT-QA3 are always statisti-
cally significantly better than ColBERT-QA1 (pre-correction
p-values all less than 0.0001) and detect no such difference
between ColBERT-QA2 and ColBERT-QA3.

Metric NQ TQ SQ
C3 ΔC1 C3 ΔC1 C3 ΔC1

k = 1 52.9 +5.7 68.0 +2.6 56.0 +2.1
k = 5 75.6 +4.2 80.7 +1.6 75.1 +2.1
k = 10 81.4 +2.8 83.6 +1.3 79.6 +1.4
k = 20 85.3 +2.3 85.6 +0.9 83.7 +1.6
k = 50 88.6 +1.6 87.4 +0.5 87.7 +1.8
k = 100 90.1 +1.1 88.4 +0.2 89.4 +1.4

MRR@100 62.8 +4.8 73.7 +2.2 64.5 +2.1

Table 2: Test-set retrieval quality
of ColBERT-QA3 (with gains over
ColBERT-QA1) at various depths.

passages. Having done this, we consider another
evaluation paradigm: the development-set EM
scores resulting from training a reader cor-
responding to each retriever. The EM scores
in Table 1 reinforce the value of RGS (i.e.,
ColBERT-QA2 and ColBERT-QA3 outperform-
ing ColBERT-QA1 by up to 0.7–2.4 EM points).
Simultaneously, the EM scores show that a higher
fraction of answerable questions (i.e., higher
Success@k) does not always imply higher EM
with a particular reader. We hypothesize that this
depends on the correlation of the retriever and
reader mistakes: A stronger retriever may find
more ‘‘positive’’ passages but it can also retrieve
more challenging negatives that could confuse an
imperfect reader model. Considering this, we next
evaluate the full ColBERT-QA system against
existing end-to-end OpenQA systems.

5 End-to-end OpenQA Evaluation

Our primary question is at this point is whether
ColBERT-QA’s retrieval improvements lead to
better end-to-end OpenQA quality. We find that
the answer is consistently positive: ColBERT-QA
leads to state-of-the-art extractive OpenQA
results.

5.1 Datasets

We continue to evaluate on NQ, SQuAD, and TQ,
using their open versions (Lee et al., 2019), which
discard the evidence passages of the validation
and test questions. As is standard, for each of
the three datasets, we randomly split the original
training set for training and validation and use the
original development set for testing.
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Name Retriever Reader NQ TQ SQuAD
(# parameters) (# parameters)

Mainstream OpenQA

BM25 + BERT
BM25

BERT-base
32.6 52.4 38.1 / –

Karpukhin et al. (2020) (110M)

GraphRetriever BM25 BERT-base
34.5 56.0 –

Min et al. (2019b) +graph-based retr. (110M)

PathRetriever TFIDF BERT-WWM
32.6 – – / 56.5

Asai et al. (2020) +graph-based retr. (330M)

Learned-Retrieval OpenQA

ORQA ORQA BERT-base
33.3 45.0 20.2 / –

Lee et al. (2019) (2×110M) (110M)

REALM REALM BERT-base
40.4 – –

Guu et al. (2020) (2×110M) (110M)

DPR (best variant) DPR BERT-base
41.5 57.9 36.7 / –

Karpukhin et al. (2020) (2×110M) (110M)

RAG (generative) DPR (joint) BART-large
44.5 56.1 –

Lewis et al. (2020) (2×110M) (406M)

Our Models

ColBERT-QA (base)
ColBERT-QA3 BERT-base

42.3 64.6 47.7 / 53.5
(110M) (110M)

ColBERT-QA (large) ColBERT-QA3 BERT-WWM 47.8 70.1 54.7 / 58.7
(110M) (330M)

Table 3: End-to-end OpenQA results, reporting exact-match (EM) on the open-domain test sets. For
SQuAD, we report EM on the main 2018 Wikipedia dump (left) and on the 2016 Wikipedia dump
(right). Underlined are the best results using only a BERT-base reader; bold is overall best.

Like the results in §4, for all three datasets, we
primarily conduct our evaluation on the December
2018 Wikipedia dump used by the majority of our
baselines. However, Asai et al. (2020) argue that
for SQuAD, comparisons should be made using
another common 2016 dump closer to the creation
date of this dataset. Thus, for SQuAD, Table 3
additionally includes our end-to-end results on this
2016 Wikipedia dump (details in Appendix A).

5.2 Baselines

The results are shown in Table 3. We report
Exact Match (EM) of the gold answer on the test
sets of the OpenQA versions of NQ, TQ, and
SQuAD. We compare against both mainstream
OpenQA approaches that rely on heuristic retrieval
and recent systems that use learned vector-based
retrieval.

Under mainstream OpenQA, we first report the
purely BM25-retrieval-based results of Karpukhin
et al. (2020). Next, we report GraphRetriever (Min
et al., 2019b) and PathRetriever (Asai et al., 2020),
both of which propose graph-based augmentation
mechanisms to classical bag-of-words IR models
(in particular, BM25 and TF-IDF, respectively).
Unlike most other OpenQA systems included,
PathRetriver uses a BERT-large reader (pretrained
with whole-word masking or WWM) with 330M
parameters.

Under learned-retrieval OpenQA, we report re-
sults of ORQA, REALM, and DPR, which are
extractive OpenQA models like ColBERT-QA.
We also include the concurrent work RAG by
Lewis et al. (2020): Unlike all other models in-
cluded here, RAG is a generative model that uses
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a BART-large reader (406M parameters; Lewis
et al., 2019).

5.3 Our Models

We use ColBERT-QA3 as our retriever and test
two reader models: (a) ColBERT-QA (base)
with a BERT-base reader and (b) ColBERT-QA
(large) with a BERT-large reader pretrained with
whole-word masking (WWM). The former allows
us to compare directly with approaches that use
BERT-base. The latter allows us to evaluate
ColBERT-QA’s performance given a powerful
reader that can better leverage its retrieval and
permits comparing against the recent RAG
model, which uses over 626M parameters, and
PathRetriever, which also uses BERT-WWM. We
train our readers separately from the retrievers,
but use the retriever to collect triples for reader
supervision.

As Table 3 shows, ColBERT-QA (base) outper-
forms the existing models that use a BERT-base
reader on all three datasets. Moreover, it also
outperforms the generative RAG on TQ, despite
using far fewer parameters and being restricted
to extractive reading. In fact, ColBERT-QA
(base) already attains state-of-the-art extractive
OpenQA performance on TQ and SQuAD.

Looking at ColBERT-QA (large) next, we ob-
serve that it also outperforms all of our baselines,
including RAG, and establishes state-of-the-art
performance for extractive OpenQA on all three
datasets. These results reinforce the impact
of improved, weakly-supervised retrieval as
explored in §4. Importantly, ColBERT-QA’s
gains are consistent and substantial: every
baseline—besides REALM, which does not
evaluate on SQuAD or TQ—trails ColBERT-QA
by several EM points on at least one dataset.

6 Conclusion

We proposed ColBERT-QA, an end-to-end
system for OpenQA that employs the recent
ColBERT retrieval model to improve both
retriever modeling and supervision in OpenQA.
To this end, we developed a simple yet effective
training strategy that progressively improves the
quality of the OpenQA training data, even without
hand-labeled evidence passages. Our results show
that ColBERT is highly effective for OpenQA
retrieval; with the proposed training paradigm,
ColBERT-QA can improve retrieval quality

over existing methods by over five Success@20
points and the resulting OpenQA pipeline attains
state-of-the-art extractive OpenQA results across
three popular datasets.
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Appendices

A Datasets

Natural Questions (NQ; Kwiatkowski et al.,
2019) contains real questions submitted to Google
by multiple searchers each, filtered such that
a Wikipedia article is among the top-5 results.
Answers are short spans in the Wikipedia article.
Owing to its large scale and organic nature, this
is the main dataset in our experiments.

SQuAD v1.1 (Rajpurkar et al., 2016) is the
popular QA dataset whose questions were written
by crowdworkers over Wikipedia articles.

TriviaQA (TQ; Joshi et al., 2017) is a set of
trivia questions originally created by enthusiasts.

Each of the three datasets has approximately
79k training questions and 9k validation questions;
NQ has 4k test questions and both of SQuAD and
TQ have 11k test questions. For all three datasets,
we use the train/validation splits released by
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Karpukhin et al. (2020). We note that the test sets
are the same for all methods across both datasets.

B Implementation Details

Corpus and Preprocessing. Similar to related
work, we use the full English Wikipedia,
excluding tables, lists, and disambiguation pages.
To facilitate comparisons with the state of the
art, we use the preprocessed passages released
by Karpukhin et al. (2020) for the 20 December
2018 dump.7 We use this corpus unless otherwise
stated. For the experiments that need Wikipedia
2016, we preprocess the 2016 dump released by
Chen et al. (2017) in the same manner.

Following standard practice (e.g., as in
Karpukhin et al., 2020 and Lee et al., 2019), we
prepend the title of each Wikipedia page to all of
its passages. For retrieval evaluation, we treat a
passage as relevant if it contains the short answer
string one or more times. Unlike ours, Karpukhin
et al.’s (2020) open-source implementation does
not take into account the title when evaluating
whether a passage contains the answer or not.
We found that this has a minimal impact on
Success@k for various depths k. For instance,
while ColBERT-QA3 outperforms the best DPR
results reported by the authors by 5.7–12.2 points
in S@20, this delta would be reduced by only
0.1–0.6 points if we did not consider answer
matches in passage titles.

Hyperparameters. For BM25 retrieval, we use
the Anserini (Yang et al., 2018) toolkit with its
default MS MARCO-tuned k1 and b for passage
search. We train our models using Python 3 and
PyTorch 1.6, relying on the popular HuggingFace
transformers library for the pretrained BERT
models (Wolf et al., 2020). We apply PyTorch’s
built-in automatic mixed precision for faster train-
ing and inference. For training ColBERT models,
we use a batch size of 64 triples (i.e., a question,
a positive passage, and a negative passage each)
with the default learning rate of 3× 10−6 and de-
fault dimension d = 128 for each embedding. Our
implementation starts from the ColBERT code.8

For our retrievers, we select the best checkpoint
among {10k, 20k, . . . , 50k} via Success@20 on a
sample of 1500 questions from each validation set.
For ColBERT-QA2 and ColBERT-QA3, the last

7https://github.com/facebookresearch/DPR.
8https://github.com/stanford-futuredata

/ColBERT/.

checkpoint was consistently the best-performing,
suggesting more training could lead to even higher
accuracy. For RGS, we set the depth k− to 1000
passages (for sampling negatives) and sample the
highest-ranked t = 5 positives from the top k+ =
50 passages. If no positives exist in the top-k+,
we take the highest-ranked positive from the
top-1000. For training the readers, we set t = 3 and
k+ = k− = 30. For training our reader models, we
use batches of 32 triples with a learning rate of 1×
10−5. For the base and large reader, we select the
best checkpoint among {10k, 20k, . . . , 50k} and
{10k, 20k}, respectively, via EM on the validation
set, and tune the number of passages fed to the
reader during inference in {5, 10, 15, 20, 30, 50}.

C Retrieval Analysis

Across a number of simple ‘‘slices’’ (Chen et al.,
2019) of NQ-dev, Table 4 compares ColBERT-QA3

(C3 for short) against ColBERT-QA1 (C1),
DPR, and BM25, revealing gains due to RGS
(vs. C1), ColBERT (vs. DPR), and neural retrieval
(vs. BM25). We use the Success@1 metric, stress-
ing each model’s precision. We find that C3’s
gains are stable and consistent across all mod-
els and slices, with gains of 2–7 points against
C1, 7–20 points against DPR, and 21–35 against
BM25. Interestingly, the largest gains against all
three can be seen on the superlative slice, which
contains over 600 queries that have comparative
markers such as ‘‘best’’, ‘‘most’’, or ‘‘-est’’ (e.g.,
‘‘largest’’).

D RGS for Single-Vector Retrieval

In this experiment, we apply RGS to a
single-vector (SV) ablation of ColBERT. Table 5
shows the results, extending those in Table 1. Like
DPR but unlike our ablation in Table 1, we test
with end-to-end retrieval (and not by re-ranking
BM25) and use in-batch negatives (but unlike
DPR, only collect those on a per-GPU basis in
a four-GPU setting). We observe very similar
gain patterns to applying RGS over ColBERT,
with +3.2, +1.3, and +2.3 point gains between
the first and third rounds. The absolute results
are considerably weaker than ColBERT-QA’s,
pointing to the value of late interaction, and are on
average 1.0-point weaker than DPR’s core setting,
suggesting better tuning or implementation of
single-vector modeling.
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S@1 Delta of C3 over

Slice Size C3 C1 DPR BM25 Example (where C3 outperforms all baselines)

all 8757 53 +5 +8 +30 who sang i won’t give up on you

misc. 1144 45 +2 +7 +21 poems that use the first letter of a word
what 1116 47 +5 +9 +25 what ’s the major league baseball record for games won in a row
who 3651 59 +6 +9 +33 who wrote the song ruby sung by kenny rogers
where 712 53 +4 +5 +33 where does the united states keep an emergency stockpile of oil quizlet
when 1818 50 +7 +6 +34 when did wales last win the 6 nations
superlative 628 52 +7 +20 +35 who formed the highest social class of republican and early imperial rome

Table 4: Retrieval results by ‘‘slice’’ on the NQ validation set. For each slice, the table reports the
number of queries (Size), Success@1 on NQ of ColBERT-QA3 (C3), and the improvement of this
model over three baselines: ColBERT-QA1 (C1), DPR, and BM25. Each row contains an example
query, for which C3 gets a correct passage and all three baselines fail. Rows are sorted by delta over
BM25.

Ablation Name Success@20 (test)
NQ TQ SQ

SV Round 1 (end-to-end) 74.0 78.1 59.2
SV Round 2 (end-to-end) 76.6 78.4 61.7
SV Round 3 (end-to-end) 77.2 79.4 61.5

Table 5: The results of applying RGS to a
single-vector ablation of the ColBERT model.

E Computational Cost and Latency

We conducted our experiments using servers with
four Titan V (12GB) or 4–8 V100 (16/32GB)
GPUs. We report running times for using four Ti-
tan V GPUs with our latest implementation. Each
round of retriever training and validation requires

7–8 hours. Precomputing passage representations
and indexing into FAISS (Johnson et al., 2019)
requires approximately 6 hours. We apply our
retrieval in batch mode: Retrieval with all NQ
train/dev/test questions takes 2–3 hours. Python
scripts for pre- and post-processing (e.g., labeling
as positive/negative, creating triples) add up to a
few hours but leave much room for optimizations.

We also compare the (one-query) retrieval
latency of ColBERT against our single-vector
ablation, noting our Python-based research imple-
mentations are not optimized for production. Both
models use the same underlying testbed, which
treats single-vector representations as a special
case of ColBERT. For questions in NQ-dev,
retrieval latency is 71ms and 36ms per query
for ColBERT and for the single-vector ablation,
respectively.
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