@article{jain-lapata-2021-memory,
title = "Memory-Based Semantic Parsing",
author = "Jain, Parag and
Lapata, Mirella",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "9",
year = "2021",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2021.tacl-1.71",
doi = "10.1162/tacl_a_00422",
pages = "1197--1212",
abstract = "We present a memory-based model for context- dependent semantic parsing. Previous approaches focus on enabling the decoder to copy or modify the parse from the previous utterance, assuming there is a dependency between the current and previous parses. In this work, we propose to represent contextual information using an external memory. We learn a context memory controller that manages the memory by maintaining the cumulative meaning of sequential user utterances. We evaluate our approach on three semantic parsing benchmarks. Experimental results show that our model can better process context-dependent information and demonstrates improved performance without using task-specific decoders.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jain-lapata-2021-memory">
<titleInfo>
<title>Memory-Based Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parag</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present a memory-based model for context- dependent semantic parsing. Previous approaches focus on enabling the decoder to copy or modify the parse from the previous utterance, assuming there is a dependency between the current and previous parses. In this work, we propose to represent contextual information using an external memory. We learn a context memory controller that manages the memory by maintaining the cumulative meaning of sequential user utterances. We evaluate our approach on three semantic parsing benchmarks. Experimental results show that our model can better process context-dependent information and demonstrates improved performance without using task-specific decoders.</abstract>
<identifier type="citekey">jain-lapata-2021-memory</identifier>
<identifier type="doi">10.1162/tacl_a_00422</identifier>
<location>
<url>https://aclanthology.org/2021.tacl-1.71</url>
</location>
<part>
<date>2021</date>
<detail type="volume"><number>9</number></detail>
<extent unit="page">
<start>1197</start>
<end>1212</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Memory-Based Semantic Parsing
%A Jain, Parag
%A Lapata, Mirella
%J Transactions of the Association for Computational Linguistics
%D 2021
%V 9
%I MIT Press
%C Cambridge, MA
%F jain-lapata-2021-memory
%X We present a memory-based model for context- dependent semantic parsing. Previous approaches focus on enabling the decoder to copy or modify the parse from the previous utterance, assuming there is a dependency between the current and previous parses. In this work, we propose to represent contextual information using an external memory. We learn a context memory controller that manages the memory by maintaining the cumulative meaning of sequential user utterances. We evaluate our approach on three semantic parsing benchmarks. Experimental results show that our model can better process context-dependent information and demonstrates improved performance without using task-specific decoders.
%R 10.1162/tacl_a_00422
%U https://aclanthology.org/2021.tacl-1.71
%U https://doi.org/10.1162/tacl_a_00422
%P 1197-1212
Markdown (Informal)
[Memory-Based Semantic Parsing](https://aclanthology.org/2021.tacl-1.71) (Jain & Lapata, TACL 2021)
ACL