@article{mohammadshahi-henderson-2021-recursive,
title = "Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement",
author = "Mohammadshahi, Alireza and
Henderson, James",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "9",
year = "2021",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2021.tacl-1.8",
doi = "10.1162/tacl_a_00358",
pages = "120--138",
abstract = "We propose the Recursive Non-autoregressive Graph-to-Graph Transformer architecture (RNGTr) for the iterative refinement of arbitrary graphs through the recursive application of a non-autoregressive Graph-to-Graph Transformer and apply it to syntactic dependency parsing. We demonstrate the power and effectiveness of RNGTr on several dependency corpora, using a refinement model pre-trained with BERT. We also introduce Syntactic Transformer (SynTr), a non-recursive parser similar to our refinement model. RNGTr can improve the accuracy of a variety of initial parsers on 13 languages from the Universal Dependencies Treebanks, English and Chinese Penn Treebanks, and the German CoNLL2009 corpus, even improving over the new state-of-the-art results achieved by SynTr, significantly improving the state-of-the-art for all corpora tested.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mohammadshahi-henderson-2021-recursive">
<titleInfo>
<title>Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alireza</namePart>
<namePart type="family">Mohammadshahi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Henderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We propose the Recursive Non-autoregressive Graph-to-Graph Transformer architecture (RNGTr) for the iterative refinement of arbitrary graphs through the recursive application of a non-autoregressive Graph-to-Graph Transformer and apply it to syntactic dependency parsing. We demonstrate the power and effectiveness of RNGTr on several dependency corpora, using a refinement model pre-trained with BERT. We also introduce Syntactic Transformer (SynTr), a non-recursive parser similar to our refinement model. RNGTr can improve the accuracy of a variety of initial parsers on 13 languages from the Universal Dependencies Treebanks, English and Chinese Penn Treebanks, and the German CoNLL2009 corpus, even improving over the new state-of-the-art results achieved by SynTr, significantly improving the state-of-the-art for all corpora tested.</abstract>
<identifier type="citekey">mohammadshahi-henderson-2021-recursive</identifier>
<identifier type="doi">10.1162/tacl_a_00358</identifier>
<location>
<url>https://aclanthology.org/2021.tacl-1.8</url>
</location>
<part>
<date>2021</date>
<detail type="volume"><number>9</number></detail>
<extent unit="page">
<start>120</start>
<end>138</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement
%A Mohammadshahi, Alireza
%A Henderson, James
%J Transactions of the Association for Computational Linguistics
%D 2021
%V 9
%I MIT Press
%C Cambridge, MA
%F mohammadshahi-henderson-2021-recursive
%X We propose the Recursive Non-autoregressive Graph-to-Graph Transformer architecture (RNGTr) for the iterative refinement of arbitrary graphs through the recursive application of a non-autoregressive Graph-to-Graph Transformer and apply it to syntactic dependency parsing. We demonstrate the power and effectiveness of RNGTr on several dependency corpora, using a refinement model pre-trained with BERT. We also introduce Syntactic Transformer (SynTr), a non-recursive parser similar to our refinement model. RNGTr can improve the accuracy of a variety of initial parsers on 13 languages from the Universal Dependencies Treebanks, English and Chinese Penn Treebanks, and the German CoNLL2009 corpus, even improving over the new state-of-the-art results achieved by SynTr, significantly improving the state-of-the-art for all corpora tested.
%R 10.1162/tacl_a_00358
%U https://aclanthology.org/2021.tacl-1.8
%U https://doi.org/10.1162/tacl_a_00358
%P 120-138
Markdown (Informal)
[Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement](https://aclanthology.org/2021.tacl-1.8) (Mohammadshahi & Henderson, TACL 2021)
ACL