@inproceedings{schwarzer-etal-2021-improving,
title = "Improving Human Text Simplification with Sentence Fusion",
author = "Schwarzer, Max and
Tanprasert, Teerapaun and
Kauchak, David",
editor = "Panchenko, Alexander and
Malliaros, Fragkiskos D. and
Logacheva, Varvara and
Jana, Abhik and
Ustalov, Dmitry and
Jansen, Peter",
booktitle = "Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)",
month = jun,
year = "2021",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.textgraphs-1.10",
doi = "10.18653/v1/2021.textgraphs-1.10",
pages = "106--114",
abstract = "The quality of fully automated text simplification systems is not good enough for use in real-world settings; instead, human simplifications are used. In this paper, we examine how to improve the cost and quality of human simplifications by leveraging crowdsourcing. We introduce a graph-based sentence fusion approach to augment human simplifications and a reranking approach to both select high quality simplifications and to allow for targeting simplifications with varying levels of simplicity. Using the Newsela dataset (Xu et al., 2015) we show consistent improvements over experts at varying simplification levels and find that the additional sentence fusion simplifications allow for simpler output than the human simplifications alone.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schwarzer-etal-2021-improving">
<titleInfo>
<title>Improving Human Text Simplification with Sentence Fusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Max</namePart>
<namePart type="family">Schwarzer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teerapaun</namePart>
<namePart type="family">Tanprasert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Kauchak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Panchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fragkiskos</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Malliaros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varvara</namePart>
<namePart type="family">Logacheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhik</namePart>
<namePart type="family">Jana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Ustalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The quality of fully automated text simplification systems is not good enough for use in real-world settings; instead, human simplifications are used. In this paper, we examine how to improve the cost and quality of human simplifications by leveraging crowdsourcing. We introduce a graph-based sentence fusion approach to augment human simplifications and a reranking approach to both select high quality simplifications and to allow for targeting simplifications with varying levels of simplicity. Using the Newsela dataset (Xu et al., 2015) we show consistent improvements over experts at varying simplification levels and find that the additional sentence fusion simplifications allow for simpler output than the human simplifications alone.</abstract>
<identifier type="citekey">schwarzer-etal-2021-improving</identifier>
<identifier type="doi">10.18653/v1/2021.textgraphs-1.10</identifier>
<location>
<url>https://aclanthology.org/2021.textgraphs-1.10</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>106</start>
<end>114</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Human Text Simplification with Sentence Fusion
%A Schwarzer, Max
%A Tanprasert, Teerapaun
%A Kauchak, David
%Y Panchenko, Alexander
%Y Malliaros, Fragkiskos D.
%Y Logacheva, Varvara
%Y Jana, Abhik
%Y Ustalov, Dmitry
%Y Jansen, Peter
%S Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)
%D 2021
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F schwarzer-etal-2021-improving
%X The quality of fully automated text simplification systems is not good enough for use in real-world settings; instead, human simplifications are used. In this paper, we examine how to improve the cost and quality of human simplifications by leveraging crowdsourcing. We introduce a graph-based sentence fusion approach to augment human simplifications and a reranking approach to both select high quality simplifications and to allow for targeting simplifications with varying levels of simplicity. Using the Newsela dataset (Xu et al., 2015) we show consistent improvements over experts at varying simplification levels and find that the additional sentence fusion simplifications allow for simpler output than the human simplifications alone.
%R 10.18653/v1/2021.textgraphs-1.10
%U https://aclanthology.org/2021.textgraphs-1.10
%U https://doi.org/10.18653/v1/2021.textgraphs-1.10
%P 106-114
Markdown (Informal)
[Improving Human Text Simplification with Sentence Fusion](https://aclanthology.org/2021.textgraphs-1.10) (Schwarzer et al., TextGraphs 2021)
ACL
- Max Schwarzer, Teerapaun Tanprasert, and David Kauchak. 2021. Improving Human Text Simplification with Sentence Fusion. In Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages 106–114, Mexico City, Mexico. Association for Computational Linguistics.