@inproceedings{baumgartner-etal-2021-entity,
title = "Entity Prediction in Knowledge Graphs with Joint Embeddings",
author = "Baumgartner, Matthias and
Dell{'}Aglio, Daniele and
Bernstein, Abraham",
editor = "Panchenko, Alexander and
Malliaros, Fragkiskos D. and
Logacheva, Varvara and
Jana, Abhik and
Ustalov, Dmitry and
Jansen, Peter",
booktitle = "Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)",
month = jun,
year = "2021",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.textgraphs-1.3",
doi = "10.18653/v1/2021.textgraphs-1.3",
pages = "22--31",
abstract = "Knowledge Graphs (KGs) have become increasingly popular in the recent years. However, as knowledge constantly grows and changes, it is inevitable to extend existing KGs with entities that emerged or became relevant to the scope of the KG after its creation. Research on updating KGs typically relies on extracting named entities and relations from text. However, these approaches cannot infer entities or relations that were not explicitly stated. Alternatively, embedding models exploit implicit structural regularities to predict missing relations, but cannot predict missing entities. In this article, we introduce a novel method to enrich a KG with new entities given their textual description. Our method leverages joint embedding models, hence does not require entities or relations to be named explicitly. We show that our approach can identify new concepts in a document corpus and transfer them into the KG, and we find that the performance of our method improves substantially when extended with techniques from association rule mining, text mining, and active learning.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baumgartner-etal-2021-entity">
<titleInfo>
<title>Entity Prediction in Knowledge Graphs with Joint Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Baumgartner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniele</namePart>
<namePart type="family">Dell’Aglio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abraham</namePart>
<namePart type="family">Bernstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Panchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fragkiskos</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Malliaros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Varvara</namePart>
<namePart type="family">Logacheva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhik</namePart>
<namePart type="family">Jana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Ustalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowledge Graphs (KGs) have become increasingly popular in the recent years. However, as knowledge constantly grows and changes, it is inevitable to extend existing KGs with entities that emerged or became relevant to the scope of the KG after its creation. Research on updating KGs typically relies on extracting named entities and relations from text. However, these approaches cannot infer entities or relations that were not explicitly stated. Alternatively, embedding models exploit implicit structural regularities to predict missing relations, but cannot predict missing entities. In this article, we introduce a novel method to enrich a KG with new entities given their textual description. Our method leverages joint embedding models, hence does not require entities or relations to be named explicitly. We show that our approach can identify new concepts in a document corpus and transfer them into the KG, and we find that the performance of our method improves substantially when extended with techniques from association rule mining, text mining, and active learning.</abstract>
<identifier type="citekey">baumgartner-etal-2021-entity</identifier>
<identifier type="doi">10.18653/v1/2021.textgraphs-1.3</identifier>
<location>
<url>https://aclanthology.org/2021.textgraphs-1.3</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>22</start>
<end>31</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Entity Prediction in Knowledge Graphs with Joint Embeddings
%A Baumgartner, Matthias
%A Dell’Aglio, Daniele
%A Bernstein, Abraham
%Y Panchenko, Alexander
%Y Malliaros, Fragkiskos D.
%Y Logacheva, Varvara
%Y Jana, Abhik
%Y Ustalov, Dmitry
%Y Jansen, Peter
%S Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)
%D 2021
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F baumgartner-etal-2021-entity
%X Knowledge Graphs (KGs) have become increasingly popular in the recent years. However, as knowledge constantly grows and changes, it is inevitable to extend existing KGs with entities that emerged or became relevant to the scope of the KG after its creation. Research on updating KGs typically relies on extracting named entities and relations from text. However, these approaches cannot infer entities or relations that were not explicitly stated. Alternatively, embedding models exploit implicit structural regularities to predict missing relations, but cannot predict missing entities. In this article, we introduce a novel method to enrich a KG with new entities given their textual description. Our method leverages joint embedding models, hence does not require entities or relations to be named explicitly. We show that our approach can identify new concepts in a document corpus and transfer them into the KG, and we find that the performance of our method improves substantially when extended with techniques from association rule mining, text mining, and active learning.
%R 10.18653/v1/2021.textgraphs-1.3
%U https://aclanthology.org/2021.textgraphs-1.3
%U https://doi.org/10.18653/v1/2021.textgraphs-1.3
%P 22-31
Markdown (Informal)
[Entity Prediction in Knowledge Graphs with Joint Embeddings](https://aclanthology.org/2021.textgraphs-1.3) (Baumgartner et al., TextGraphs 2021)
ACL
- Matthias Baumgartner, Daniele Dell’Aglio, and Abraham Bernstein. 2021. Entity Prediction in Knowledge Graphs with Joint Embeddings. In Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15), pages 22–31, Mexico City, Mexico. Association for Computational Linguistics.