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Abstract

Human language encompasses more than just
text; it also conveys emotions through tone and
gestures. We present a case study of three
simple and efficient Transformer-based archi-
tectures for predicting sentiment and emotion
in multimodal data. The Late Fusion model
merges unimodal features to create a mul-
timodal feature sequence, the Round Robin
model iteratively combines bimodal features
using cross-modal attention, and the Hybrid
Fusion model combines trimodal and uni-
modal features together to form a final fea-
ture sequence for predicting sentiment. Our
experiments show that our small models are
effective and outperform the publicly released
versions of much larger, state-of-the-art multi-
modal sentiment analysis systems.

1 Introduction

Language is composed of three different modalities:
text, audio, and video. These three modalities to-
gether make it easier for humans to convey emotion
and sentiment. Thus, a machine learning model for
sentiment analysis needs to learn the features and
interactions of all three modalities. For example, a
frown in the video can alter the emotion expressed
in the text transcript, or audio intensity can help
determine if a speaker is getting agitated.

Multimodal learning has recently received a
good deal of attention from the natural language
processing community [Sun et al., 2016, Chen et al.,
2018, Liu et al., 2018, Pham et al., 2019]. The
Transformer network [Vaswani et al., 2017], with
its self-attention modules, has achieved strong per-
formance in multimodal learning; attention pro-
vides a natural way to model the relationship be-
tween pairs of modalities.

In this work we investigate three small,
lightweight, Transformer-based architectures for
multimodal sentiment analysis and emotion recog-

nition. Our first model is an implementation of
the Late Fusion model commonly used as a base-
line system, which assigns individual Transformer
blocks to each of the three modalities for feature
extraction and then combines these unimodal fea-
tures to learn cross-modal interactions. The second
model is an implementation of the Round Robin
approach; the model generates bimodal features
by using cross-modal attention to combine pairs
of modalities, one pair at a time. Our last model
is a Hybrid of the early and late fusion schemes.
This model merges the features extracted using a
late fusion pipeline, as well as those from an early
fusion pipeline, where the three modalities are con-
catenated and passed through a single Transformer
block for feature extraction;.

We present experiments using these three mod-
els on three multimodal datasets: IEMOCAP
[Busso et al., 2008], an emotion recognition dataset,
and CMU-MOSI [Zadeh et al., 2016] and CMU-
MOSEI [Zadeh et al., 2018b], two multimodal sen-
timent analysis datasets. Our results show that our
small models are competitive with state-of-the-art
models that use much more complex architectures.

Our main contributions are as follows:

• We present three lightweight architectures for
multimodal sentiment analysis that achieve
comparable results to much larger, state-of-
the-art models.

• We analyze the effect of removing or simplify-
ing components of state-of-the-art multimodal
architectures.

• We conduct experiments on small train-
ing sets, demonstrating the ability of our
lightweight architectures to leverage limited
training data and computational resources.
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2 Related Work

We do not give an exhaustive list of prior work in
multimodal sentiment analysis, but focus on recent
neural approaches that achieved state-of-the-art per-
formance at their times of publication.

2.1 Recurrent Network Approaches

The Memory Fusion Network (MFN) of Zadeh
et al. [2018a] uses a separate LSTM to encode
each of the three modalities and then uses atten-
tion to model cross-modal interactions for different
combinations of modalities. The Recurrent At-
tended Variation Embedding Network (RAVEN)
of Wang et al. [2019] encodes the audio and video
features using two recurrent neural networks; these
features are combined with the textual input using
cross-modal attention in a Gated Modality Mixing
Network. The Multi-Attention Recurrent Network
(MARN) of Zadeh et al. [2018c] is an LSTM-based
architecture that stores representations of each of
the three modalities, which are then combined us-
ing a multi-attention block. Finally, the Multimodal
Cyclic Translation Network (MCTN) of Pham et al.
[2019] produces multimodal features by translating
one modality into another, learning a joint encod-
ing in that direction, and then back-translating to
learn a joint encoding in the other direction.

2.2 Transformer Network Approaches

The Transformer network [Vaswani et al., 2017]
has been used widely in neural machine translation
[Tubay and Costa-jussà, 2018, Edunov et al., 2018,
Xia et al., 2019, Devlin et al., 2019] and has proven
effective for sentiment analysis and emotion recog-
nition. However, existing architectures are very
dense compared to our three lightweight models.

The Multimodal Transformer (MuLT) of Tsai
et al. [2019] modifies the Transformer block to
compute cross-modal attention for two modalities
at a time. It combines modalities in directed pairs,
using a total of six Transformers, whose outputs
are then merged into a single multimodal repre-
sentation. Unlike other works, MuLT is able to
handle cases where the three modalities are not
aligned at the word level; it learns soft alignments
via the cross-modal attention weights for each pair
of modalities. The model works well in the un-
aligned case, and in the aligned case, it gives state
of the art performance the Happy emotion in IEMO-
CAP.

The Factorized Multimodal Transformer (FMT)

of Zadeh et al. [2019] introduces Factorized Multi-
modal Self-Attention (FSM) modules, which com-
pute self-attention over unimodal, bimodal, and
trimodal inputs in parallel. FMT gives state of
the art performance in the word-aligned case on
CMU-MOSI and on the Sad, Angry, and Neutral
emotions in IEMOCAP. We use FMT, along with
the word-aligned version of MuLT, as baselines for
comparison in our experiments.

2.3 Canonical Correlation Approach
The Interaction Canonical Correlation Network
(ICCN) [Sun et al., 2020] implements Deep Canon-
ical Correlation Analysis (DCCA) [Andrew et al.,
2013] to extract bimodal features from the outer
product matrix of a pair of modalities. Sun et al.
use two pairs, text with audio and text with video;
these “text-based audio” and “text-based video”
features are concatenated with purely textual fea-
tures to form a multimodal embedding for senti-
ment analysis. ICCN gives state-of-the-art perfor-
mance on CMU-MOSEI and on the Sad emotion
in IEMOCAP.

3 Models

3.1 Input Alignment
We use T , A, and V , to represent the three modali-
ties: text, audio, and video, respectively. Following
the notation in [Tsai et al., 2019] and [Zadeh et al.,
2019], we denote the input as

XT,A,V = {xT , xA, xV }

where

xi = [xt,i] for i ∈ [T,A, V ] and t ∈ [1, τ ]

and τ is the length of the input sentence.
Each of the three modalities has its own low-

level features, such as the Mel spectrogram for
audio or facial landmarks for video. These features
are extracted at different sampling rates — one set
of features per word or character for text, per mil-
lisecond for audio, and per frame for video — and
thus the input sequences for the three modalities are
often different. A five-thousand-millisecond audio
sequence, for example, may be only a three-word
sequence from a textual perspective and a 50-frame
sequence from a video perspective.

We align the audio and video to the text using
the timestamps provided in the text transcripts. The
set of audio or video samples that correspond to a
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Figure 1: Architecture of our Late Fusion model. Unimodal Transformers process each modality separately; the outputs of
these Transformers are summed and passed through a residual network of linear layers to produce the final prediction.

word in the transcript are combined using a series
of 1D convolutional layers:

X̄{T,A,V } = conv1D
(
X{T,A,V }

)
∈ Rd

where d is a common feature dimension size. This
procedure ensures that the input sequence length is
the same across modalities.

3.2 Transformer Blocks

Our three lightweight architectures are comprised
of Transformer blocks [Vaswani et al., 2017],
which are non-recurrent neural networks that can
process sequential data. It consists of alternating
attention and linear layers. The attention block of a
Transformer uses multi-head attention, where each
head computes scaled dot product attention:

attn(Q,K, V ) = softmax
(
QKT

√
dk

)
V

headi = attn
(
QWQ

i ,KW
K
i , V W

V
i

)
multi(Q,K, V ) = [head1; . . . ; headh]WO

where Q, K, V represent the query, key and value;
dk is the key dimension size; WQ

i , WK
i , W V

i are
learned projection matrices for head i; and WO is
a learned projection matrix for the attention block.

In addition, Vaswani et al. note that positional
encodings must be added to Transformer input be-
cause there is no sequential information present in
the Transformer itself:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

X̂ = X̄ + PE

3.3 Three Multimodal Architectures

Figure 1 shows our Late Fusion architecture. Three
unimodal Transformers learn high-level features
from the low-level input features of each modality.
The outputs of these unimodal Transformers are
then merged together using a simple summation,
rather than the merge layer used in previous work
[Tsai et al., 2019], and passed to a residual network
of linear layers [Xie et al., 2017] for sentiment
prediction.

Figure 2 shows our Round Robin architecture,
which is a simplification of MuTL [Tsai et al.,
2019]. Three cross-modal Transformers learn bi-
modal feaatures for ordered pairs of modalities,
where the query is one modality and the key/value
is the other. We use only three pairs — text
query and audio key/value, audio query and video
key/value, and video query and text key/value —
with bimodal information flowing in only one di-
rection; in contrast, MuLT uses six pairs of cross-
modal Transformers, with information flowing in
both directions. MuLT also uses three Transform-
ers, one for each modality, to merge the two pairs
sharing that modality as key/value; our pairwise
features are simply concatenated and passed to the
output residual network.

Figure 3 shows our Hybrid Fusion architecture,
which uses both an early fusion approach that con-
catenates the inputs and passes them to a single
Transformer to learn trimodal features, as well as
a late fusion approach that passes each modality
through a separate Transformer to learn unimodal
features. The trimodal and unimodal features are
concatenated together and merged using a layer of
Gated Recurrent Units [Liang et al., 2018].



132

Figure 2: Architecture of our Round Robin model. Modalities are combined in a round-robin fashion via thrree cross-modal
Transformers, one for each ordered pair of modalities: [T,A], [A, V ], [V, T ]. The outputs of these cross-modal Transformers are
concatenated and passed through a residual network of linear layers to produce the final prediction.

Figure 3: Architecture of our Hybrid Fusion model. All three modalities are passed through an early fusion Transformer to
produce trimodal features; in parallel, they are individually passed to separate Transformers to produce unimodal features. All
features are then concatenated and passed through a GRU and a residual network of linear layers to produce the final prediction.

4 Experiments

We train our models on a single NVIDIA K80 GPU.
We tune hyperparameter values for our model us-
ing the validation sets provided by our evaluation
datasets; we achieve the best validation perfor-
mance using 8 attention blocks per Transformer,
each with 5 attention heads, and a hidden size was
set to 40. The dropout rate was set to 0.15; the best
learning rate for IEMOCAP was 0.02, while for
CMU-MOSI and CMU-MOSEI it was 0.01, with
batch sizes of 32, 128, and 40, respectively.

4.1 Datasets

IEMOCAP [Busso et al., 2008] consists of video
recordings of 151 conversation sessions (dia-
logues), totaling around 6k verbal interactions.
This dataset is intended for multilabel emotion clas-
sification; we evaluate on the four labeled emotions
(Happy, Sad, Angry, and Neutral) used in previous
work [Wang et al., 2019]; also following previous

work, we report binary accuracy and F1 score as
the evaluation metrics on this dataset.

CMU-MOSI [Zadeh et al., 2016] is a sentiment
analysis dataset of 2199 short monologues labeled
in the range [−3, 3], with −3 being strongly neg-
ative and +3 being strongly positive. Following
previous work, we report seven-class and binary
accuracy, F1 score, mean absolute error, and corre-
lation with human judgments.

CMU-MOSEI [Zadeh et al., 2018b] is a senti-
ment and emotion analysis dataset of 23K movie
reviews from YouTube. As with CMU-MOSI, it is
labeled in the range of [−3, 3], and its evaluation
metrics are the same as in CMU-MOSI.

4.2 Features and Alignment
Text Features: For word-level textual features
we use the pretrained, 300-dimensional, Common
Crawl GloVe embeddings [Pennington et al., 2014].

Audio Features: We use Neurospeech [Orozco-
Arroyave et al., 2018] to extract 74 low-level audio
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Model Happy Sad Angry Neutral

Metric BA F1 BA F1 BA F1 BA F1

MARN [Zadeh et al., 2018b] 86.7 83.6 82.0 81.2 84.6 84.2 66.8 65.9
MFN [Zadeh et al., 2018a] 86.5 84.0 83.5 82.1 85.0 83.7 69.6 69.2
RAVEN [Wang et al., 2019] 87.3 85.8 83.4 83.1 87.3 86.7 69.7 69.3
MCTN [Pham et al., 2019] 84.9 83.1 80.5 79.6 79.7 80.4 62.3 57.0
ICCN [Sun et al., 2020] 87.4 84.7 88.6 88.0 86.3 85.9 69.7 68.5

MuLT [Tsai et al., 2019] 90.7 88.6 86.7 86.0 87.4 87.0 72.4 70.7
MuLT* 84.7 83.5 84.5 84.1 84.9 84.7 70.4 70.7
FMT [Zadeh et al., 2019] 88.8 87.2 88.0 87.7 89.7 89.5 74.0 73.8
FMT* 85.6 85.1 84.1 83.8 87.9 88.2 70.6 70.4

Late Fusion 87.7 86.8 87.3 86.8 87.9 87.0 72.0 71.5
Round Robin 87.5 84.9 85.2 84.4 87.4 87.5 70.0 69.4
Hybrid Fusion 88.0 86.0 86.9 86.2 89.0 89.0 71.0 71.5

Table 1: Emotion recognition results on IEMOCAP. The metrics are binary (one vs all) accuracy and the F1 score for each of
the four emotions. * indicates results from open source code. Bold indicates scores higher than that of our model.

Model ACC7 ACC2 F1 MAE Corr

MARN - 77.1 77.0 0.97 0.63
MFN - 77.4 77.3 0.97 0.63
RAVEN 33.2 78.0 76.6 0.92 0.69
MCTN 35.6 79.3 79.1 0.91 0.68
ICCN 39.0 83.1 83.0 0.86 0.71

MuLT 40.0 83.0 82.8 0.87 0.70
MuLT* 30.7 77.5 76.9 1.04 0.66
FMT - 83.5 83.5 0.84 0.74
FMT* - 78.3 77.8 0.91 0.70

Late Fusion 40.2 83.6 80.0 0.92 0.69
Round Robin 39.3 78.1 76.7 0.96 0.68
Hybrid Fusion 40.6 82.1 79.9 0.94 0.69

Table 2: Sentiment analysis results on CMU-MOSI. ACC7

was not reported by some baselines. The metrics are seven-
way and binary accuracy, F1 score, mean absolute error, and
correlation with human judgments. All metrics are better
when higher, except for mean absolute error.

Model ACC7 ACC2 F1 MAE Corr

MFN 45.0 76.9 77.0 0.71 0.54
RAVEN 50.0 79.1 79.5 0.61 0.66
MCTN 49.6 79.8 80.6 0.61 0.67
ICCN 51.6 84.2 84.2 0.57 0.71

MuLT 51.8 82.5 82.3 0.58 0.70
MuLT* 48.9 80.7 80.9 0.63 0.65

Late Fusion 52.3 80.7 80.7 0.61 0.69
Round Robin 51.4 80.6 79.9 0.62 0.66
Hybrid Fusion 51.9 80.6 80.5 0.61 0.68

Table 3: Sentiment analysis results on CMU-MOSEI. The
metrics used are the same as in Table 2.

features, including Mel-frequency cepstral coeffi-
cients and transformations thereof, as well as har-
monic, percussive, and glottal source parameters.
We also use COVERAP [Degottex et al., 2014] to
extract pitch tracking and voiced/unvoiced sloping
parameters, peak slope parameters, and maximum
dispersion quotients.

Video Features: We extract 35 facial units us-
ing Facet [iMotions, 2017], as well as 35 facial
action units and 30 facial landmark and gaze fea-

tures using OpenFace [Baltrusaitis et al., 2018].

4.3 Baseline Models
We compare our results with the state-of-the-art
Multimodal Transformer (MuLT)1 [Tsai et al.,
2019] and Factorized Multimodal Transformer
(FMT) [Zadeh et al., 2019], as well as Memory
Fusion Network (MFN) [Zadeh et al., 2018a],
Recurrent Attended Variation Embedding Net-
work (RAVEN) [Wang et al., 2019], Multi-
Attention Recurrent Network (MARN) [Zadeh
et al., 2018c], and Multimodal Cyclic Translation
Network (MCTN) [Pham et al., 2019]. These sys-
tems are described in Section 2; all attained state
of the art on at least one of the evaluation datasets
at their times of publication, and all use a similar
feature set to our work.

5 Results and Discussion

We present the results of our model compared to the
reported results of our baseline models in Tables
1, 2, and 3. The best-performing MuLT and FMT
models are extremely dense, with around 15 and 77
million parameters, respectively. In contrast, our
models have between 7-9 million trainable parame-
ters, depending on the architecture; despite using
about half as many parameters as MuLT, we see
that our models produce comparable results.

We perform fairly well on IEMOCAP, which has
around 2717 training samples; we achieve scores
around 1-2% below the best-performing model,
FMT. On the tiny CMU-MOSI dataset, which has
just 1284 training samples, our Hybrid Fusion and

1We use the aligned version of MuLT for fair comparison
with models that obligatorily use word alignments.
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IEMOCAP CMU-MOSI CMU-MOSEI

Model Time (min) Mem use (%) Time (min) Mem. use (%) Time (min) Mem. use (%)

MuLT* 8.1 24.2 7.4 20.0 58.6 59.1
FMT* 55.2 28.0 151.1 26.5 - -

Late Fusion 1.8 22.1 1.3 22.0 14.9 48.0
Round Robin 1.7 22.7 2.7 19.0 15.8 45.0
Hybrid Fusion 2.5 23.0 1.4 20.0 21.3 54.0

Table 4: Comparison of training time and memory use among MuLT*, FMT*, and our models.

Model Happy Sad Angry Neutral

Metric BA F1 BA F1 BA F1 BA F1

MuLT* 82.6 81.5 79.4 80.7 78.3 78.9 60.1 60.7
FMT* 82.1 81.2 80.2 80.9 80.0 81.7 60.5 60.2

Late Fusion 84.1 82.4 80.3 76.5 81.0 79.4 61.6 61.2
Round Robin 85.2 81.2 79.9 77.2 79.0 76.6 63.2 58.1
Hybrid Fusion 85.5 80.7 80.8 79.9 81.0 80.8 64.7 63.5

Table 5: Results on the reduced IEMOCAP dataset of 1284 training samples. The metrics used are the same as in Table 1.

Model Happy Sad Angry Neutral

Metric BA F1 BA F1 BA F1 BA F1

Unimodal [T] 86.4 84.0 82.7 78.5 81.6 78.3 67.9 65.9
Unimodal [A] 85.9 79.0 82.2 81.5 85.9 85.9 62.8 60.5
Unimodal [V] 85.1 81.0 79.1 70.4 75.6 74.1 58.8 56.3

Bimodal [T,A] 84.5 82.6 84.8 84.1 85.8 86.1 68.9 67.2
Bimodal [T,V] 85.3 85.1 80.1 80.7 84.2 83.5 66.4 65.4
Bimodal [V,A] 86.8 82.9 81.4 77.9 86.4 86.1 62.5 62.6

Late Fusion [T,A,V] 87.7 86.8 87.3 86.8 87.9 87.0 72.0 71.5

Table 6: Ablation results on IEMOCAP for our Late Fusion model.

Model Happy Sad Angry Neutral

Metric BA F1 BA F1 BA F1 BA F1

Bimodal [T,A] 85.2 82.9 82.9 83.9 86.2 86.4 70.2 69.5
Bimodal [T,V] 86.4 83.9 79.3 77.4 81.4 81.4 65.1 65.0
Bimodal [V,A] 86.4 82.5 79.6 78.6 85.6 85.2 63.1 62.7

Round Robin [T,A,V] 87.5 84.9 85.2 87.4 87.5 86.8 70.0 69.4

Table 7: Ablation results on IEMOCAP for our Round Robin model.

Late Fusion models give state of the art results on
seven-way and binary accuracy, respectively.

The CMU-MOSEI dataset is much larger than
IEMOCAP and CMU-MOSI, with close to 16265
training samples. Our models perform the weak-
est on this dataset, falling short of the state of the
art models by around 2-3%, suggesting that our
models may be too small to learn the entire dis-
tribution. Neither MARN [Zadeh et al., 2018c]
nor FMT [Zadeh et al., 2019] reports results on
CMU-MOSEI, so they are omitted from Table 3.

We also experiment with the open source code
available for MuLT and FMT (denoted by *). Us-
ing the hyperparameter settings provided2, we were
nevertheless unable to match those systems’ re-
ported performance, possibly due to differences

2Batch size for FMT* is not given; we use 20, the default.

resulting from random initialization. In training
MuLT* and FMT*, we observe that the models
are overfitting, with a mean difference of 15-20%
between the train and test accuracy; in contrast,
the largest train-test accuracy difference among our
three models is only about 10%. The smaller num-
ber of parameters in our model reduces the risk of
overfitting on smaller datasets, while still achieving
good performance on larger datasets.

5.1 Analysis of Lightweight Architectures
We compare the training time and memory foot-
print of our models with MuLT* and FMT* in Ta-
ble 43. All models are trained on a single NVIDIA
K80 GPU with 24GB of memory. We train for 30
epochs on IEMOCAP, 100 on CMU-MOSI and 40

3FMT* does not provide hyperparameter settings for CMU-
MOSEI, so those results are omitted.
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Model Happy Sad Angry Neutral

Metric BA F1 BA F1 BA F1 BA F1

Bimodal early [T,A] 84.8 83.1 82.8 81.3 85.1 86.2 68.6 68.7
Bimodal early [T,V] 86.2 83.6 80.3 80.7 85.6 84.8 67.8 67.7
Bimodal early [V,A] 83.9 86.2 84.1 84.2 84.8 85.1 70.0 68.5

Hybrid Fusion [T,A,V] 88.0 86.0 86.9 86.2 89.0 89.0 71.0 71.5

Bimodal late [T,A] 87.0 85.1 85.0 84.9 86.7 86.9 70.3 68.8
Bimodal late [T,V] 86.2 83.8 83.7 83.5 85.6 85.8 67.8 66.9
Bimodal late [V,A] 85.7 83.2 81.1 82.0 86.8 86.9 69.9 67.6

Table 8: Ablation results on IEMOCAP for our Hybrid Fusion model: bimodal early fusion with trimodal late fusion (top) and
trimodal early fusion with bimodal late fusion (bottom).

Model Happy Sad Angry Neutral

Metric BA F1 BA F1 BA F1 BA F1

MuLT 90.7 88.6 86.7 86.0 87.4 87.0 72.4 70.7
MuLT* 84.7 83.5 84.5 84.1 84.85 84.7 70.4 70.7

Round Robin [T → A → V] 87.5 84.9 85.2 84.4 87.4 87.5 70.0 69.4
Round Robin [V → A → T] 83.0 81.8 82.2 83.7 85.9 82.7 68.2 68.3

Table 9: Results on IEMOCAP for our Round Robin model, comparing information flow in each direction, alongside MuLT
and MuLT*, which capture information flowing in both directions.

on CMU-MOSEI (the number of epochs needed
for MuLT to converge, as reported by Tsai et al.
[2019]).

On the smallest dataset, CMU-MOSI, training
MuLT* took just over seven minutes, while FMT*
took 2.5 hours. Our models train in under three
minutes and outperform both MuLT* and FMT*,
and this difference in training speed holds for CMU-
MOSI and CMU-MOSEI as well. Thus our model,
available in the supplementary materials4, is the
fastest and best-performing multimodal sentiment
system currently available for public use.

We also conduct experiments on a substantially
reduced IEMOCAP training subset of 1284 sam-
ples, matching the size of CMU-MOSI, which we
create by randomly sampling from the full IEMO-
CAP training set. Table 5 shows the results of our
models, as well as MuLT* and FMT*, retrained on
this smaller IEMOCAP training set, and evaluated
on the full IEMOCAP test set. We see that our mod-
els, with their smaller numbers of parameters, are
better able to learn from limited training data than
are state-of-the-art models with double or more the
number of trainable parameters.

5.2 Analysis of Architecture Components
We perform ablation experiments on our models
using the IEMOCAP dataset; ablation results for
CMU-MOSI and CMU-MOSEI are omitted due
to space constraints, but exhibit similar trends. Ta-
ble 6 presents the results of modality ablation on

4We will release it online after the anonymity period.

the simplest Late Fusion model; it clearly shows
that unimodal and bimodal models are unable to
match the performance of a full multimodal model.
This demonstrates the importance of considering
all modalities when analyzing spoken language,
since some of the emotions or sentiment may be
dependent more on the audio or the visual actions
of the speaker, rather than the text.

Examining the unimodal results, we see that the
Text modality is the most informative for predict-
ing Happy, Sad, and Neutral, while Audio is the
most informative for Angry. However, the bimodal
results do not always match the unimodal results.
The best-performing bimodal model for Happy is
[V,A], despite Video being the worst-performing
single modality, and [T,A] is the worst-performing
bimodal model, despite both Text and Audio out-
performing Video individually. Considering the
other three emotions, we see that the best bimodal
model varies between [T,A] and [V,A], with [T,V]
generally performing the worst.

Table 7 shows the results of modality ablation
on the Round Robin model; as the architecture does
not support unimodal experiments, only bimodal
results are shown. Comparing Table 6 to Table 7,
we see that the cross-modal Transformers of the
full Round Robin model are outperformed by the
full Late Fusion model. However, the relative per-
formance among modality pairs is consistent across
Tables 6 and 7.

Finally, Table 8 shows the results of modality
ablation on the Hybrid Fusion model, where we
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compare the relative contributions of the early fu-
sion and late fusion halves of the architecture. The
top of the table shows the results of reducing the
early fusion half to only two modalities while re-
taining all three modalities in the late fusion half,
and the bottom shows the results of reducing the
late fusion half to two modalities while retaining
all three in the early fusion half; in both sets of
experiments, the overall model has access to all
three modalities, but only through either the early
fusion path or the late fusion path.

Surprisingly, although standalone early fusion
models are outperformed by standalone late fusion
models [Tsai et al., 2019], we find that a hybrid
model containing a full, trimodal early fusion half
is more robust to modality ablation in its late fusion
half than a model with a full late fusion half is to
an ablated early fusion half. Our results in this
experiment also show greater variability among
modality pairs. The [T,A] combination, which gave
the best performance in the Late Fusion and Round
Robin experiments, remains the strongest modality
pair for the full early fusion, bimodal late fusion
model. In contrast, for the bimodal early fusion,
full late fusion model, [T,A] is outperformed by
one of the two Video-based modality pairs, [T,V]
or [V,A], on each of the four emotions, suggesting
that the performance gap of early versus late fusion
differs across modalities.

5.2.1 Order of Modalities in Round Robin
The effect of direction on our Round Robin model
is shown in Table 9; this experiment shows the
impact of the direction of information flow across
modalities within the model. Comparing our re-
sults to those of MuLT and MuLT*, we see that
capturing information flow in one direction, text
to audio to video and back to text, is enough for a
model to give good predictions, without requiring
the additional overhead of handling both directions.
We can also see that the direction does matter; the
performance of the Round Robin model with in-
formation flowing in the opposite direction, from
video to audio to text and back to video, is relatively
poor. These results suggest that the interactions be-
tween pairs of modalities are directed.

6 Conclusion

We have presented three lightweight architectures
for multimodal sentiment analysis and emotion
recognition. The Late Fusion model merges uni-
modal features, the Round Robin model iteratively

combines bimodal features, and the Hybrid Early-
Late Fusion model combines early-fusion trimodal
and late-fusion unimodal features. Our proposed
models are much smaller in size compared to exist-
ing state-of-the-art models; they are able to attain
new state-of-the-art scores on the CMU-MOSI and
CMU-MOSEI datasets on two metrics, while re-
maining competitive on the others. Further, our
experiments analyzing the relative contribution of
modalities and architecture components in our mod-
els suggest new directions for developing multi-
modal systems. We hope that our simple architec-
tures for sentiment and emotion detection, currently
the fastest and best-performing publicly available
system, as well as the insights revealed in our exper-
imental results, can be useful for further research
in the field.
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