@inproceedings{kaminska-etal-2021-nearest,
title = "Nearest neighbour approaches for Emotion Detection in Tweets",
author = "Kaminska, Olha and
Cornelis, Chris and
Hoste, Veronique",
editor = "De Clercq, Orphee and
Balahur, Alexandra and
Sedoc, Joao and
Barriere, Valentin and
Tafreshi, Shabnam and
Buechel, Sven and
Hoste, Veronique",
booktitle = "Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wassa-1.22",
pages = "203--212",
abstract = "Emotion detection is an important task that can be applied to social media data to discover new knowledge. While the use of deep learning methods for this task has been prevalent, they are black-box models, making their decisions hard to interpret for a human operator. Therefore, in this paper, we propose an approach using weighted k Nearest Neighbours (kNN), a simple, easy to implement, and explainable machine learning model. These qualities can help to enhance results{'} reliability and guide error analysis. In particular, we apply the weighted kNN model to the shared emotion detection task in tweets from SemEval-2018. Tweets are represented using different text embedding methods and emotion lexicon vocabulary scores, and classification is done by an ensemble of weighted kNN models. Our best approaches obtain results competitive with state-of-the-art solutions and open up a promising alternative path to neural network methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kaminska-etal-2021-nearest">
<titleInfo>
<title>Nearest neighbour approaches for Emotion Detection in Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olha</namePart>
<namePart type="family">Kaminska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Cornelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Orphee</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joao</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Barriere</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sven</namePart>
<namePart type="family">Buechel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emotion detection is an important task that can be applied to social media data to discover new knowledge. While the use of deep learning methods for this task has been prevalent, they are black-box models, making their decisions hard to interpret for a human operator. Therefore, in this paper, we propose an approach using weighted k Nearest Neighbours (kNN), a simple, easy to implement, and explainable machine learning model. These qualities can help to enhance results’ reliability and guide error analysis. In particular, we apply the weighted kNN model to the shared emotion detection task in tweets from SemEval-2018. Tweets are represented using different text embedding methods and emotion lexicon vocabulary scores, and classification is done by an ensemble of weighted kNN models. Our best approaches obtain results competitive with state-of-the-art solutions and open up a promising alternative path to neural network methods.</abstract>
<identifier type="citekey">kaminska-etal-2021-nearest</identifier>
<location>
<url>https://aclanthology.org/2021.wassa-1.22</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>203</start>
<end>212</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Nearest neighbour approaches for Emotion Detection in Tweets
%A Kaminska, Olha
%A Cornelis, Chris
%A Hoste, Veronique
%Y De Clercq, Orphee
%Y Balahur, Alexandra
%Y Sedoc, Joao
%Y Barriere, Valentin
%Y Tafreshi, Shabnam
%Y Buechel, Sven
%Y Hoste, Veronique
%S Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F kaminska-etal-2021-nearest
%X Emotion detection is an important task that can be applied to social media data to discover new knowledge. While the use of deep learning methods for this task has been prevalent, they are black-box models, making their decisions hard to interpret for a human operator. Therefore, in this paper, we propose an approach using weighted k Nearest Neighbours (kNN), a simple, easy to implement, and explainable machine learning model. These qualities can help to enhance results’ reliability and guide error analysis. In particular, we apply the weighted kNN model to the shared emotion detection task in tweets from SemEval-2018. Tweets are represented using different text embedding methods and emotion lexicon vocabulary scores, and classification is done by an ensemble of weighted kNN models. Our best approaches obtain results competitive with state-of-the-art solutions and open up a promising alternative path to neural network methods.
%U https://aclanthology.org/2021.wassa-1.22
%P 203-212
Markdown (Informal)
[Nearest neighbour approaches for Emotion Detection in Tweets](https://aclanthology.org/2021.wassa-1.22) (Kaminska et al., WASSA 2021)
ACL
- Olha Kaminska, Chris Cornelis, and Veronique Hoste. 2021. Nearest neighbour approaches for Emotion Detection in Tweets. In Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 203–212, Online. Association for Computational Linguistics.