Abstract
In this paper, we introduce our TMU Neural Machine Translation (NMT) system submitted for the Patent task (Korean Japanese and English Japanese) of 8th Workshop on Asian Translation (Nakazawa et al., 2021). Recently, several studies proposed pre-trained encoder-decoder models using monolingual data. One of the pre-trained models, BART (Lewis et al., 2020), was shown to improve translation accuracy via fine-tuning with bilingual data. However, they experimented only Romanian!English translation using English BART. In this paper, we examine the effectiveness of Japanese BART using Japan Patent Office Corpus 2.0. Our experiments indicate that Japanese BART can also improve translation accuracy in both Korean Japanese and English Japanese translations.- Anthology ID:
- 2021.wat-1.13
- Volume:
- Proceedings of the 8th Workshop on Asian Translation (WAT2021)
- Month:
- August
- Year:
- 2021
- Address:
- Online
- Editors:
- Toshiaki Nakazawa, Hideki Nakayama, Isao Goto, Hideya Mino, Chenchen Ding, Raj Dabre, Anoop Kunchukuttan, Shohei Higashiyama, Hiroshi Manabe, Win Pa Pa, Shantipriya Parida, Ondřej Bojar, Chenhui Chu, Akiko Eriguchi, Kaori Abe, Yusuke Oda, Katsuhito Sudoh, Sadao Kurohashi, Pushpak Bhattacharyya
- Venue:
- WAT
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 133–137
- Language:
- URL:
- https://aclanthology.org/2021.wat-1.13
- DOI:
- 10.18653/v1/2021.wat-1.13
- Bibkey:
- Cite (ACL):
- Hwichan Kim and Mamoru Komachi. 2021. TMU NMT System with Japanese BART for the Patent task of WAT 2021. In Proceedings of the 8th Workshop on Asian Translation (WAT2021), pages 133–137, Online. Association for Computational Linguistics.
- Cite (Informal):
- TMU NMT System with Japanese BART for the Patent task of WAT 2021 (Kim & Komachi, WAT 2021)
- Copy Citation:
- PDF:
- https://aclanthology.org/2021.wat-1.13.pdf
Export citation
@inproceedings{kim-komachi-2021-tmu, title = "{TMU} {NMT} System with {J}apanese {BART} for the Patent task of {WAT} 2021", author = "Kim, Hwichan and Komachi, Mamoru", editor = "Nakazawa, Toshiaki and Nakayama, Hideki and Goto, Isao and Mino, Hideya and Ding, Chenchen and Dabre, Raj and Kunchukuttan, Anoop and Higashiyama, Shohei and Manabe, Hiroshi and Pa, Win Pa and Parida, Shantipriya and Bojar, Ond{\v{r}}ej and Chu, Chenhui and Eriguchi, Akiko and Abe, Kaori and Oda, Yusuke and Sudoh, Katsuhito and Kurohashi, Sadao and Bhattacharyya, Pushpak", booktitle = "Proceedings of the 8th Workshop on Asian Translation (WAT2021)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.wat-1.13", doi = "10.18653/v1/2021.wat-1.13", pages = "133--137", abstract = "In this paper, we introduce our TMU Neural Machine Translation (NMT) system submitted for the Patent task (Korean Japanese and English Japanese) of 8th Workshop on Asian Translation (Nakazawa et al., 2021). Recently, several studies proposed pre-trained encoder-decoder models using monolingual data. One of the pre-trained models, BART (Lewis et al., 2020), was shown to improve translation accuracy via fine-tuning with bilingual data. However, they experimented only Romanian!English translation using English BART. In this paper, we examine the effectiveness of Japanese BART using Japan Patent Office Corpus 2.0. Our experiments indicate that Japanese BART can also improve translation accuracy in both Korean Japanese and English Japanese translations.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="kim-komachi-2021-tmu"> <titleInfo> <title>TMU NMT System with Japanese BART for the Patent task of WAT 2021</title> </titleInfo> <name type="personal"> <namePart type="given">Hwichan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mamoru</namePart> <namePart type="family">Komachi</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021-08</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 8th Workshop on Asian Translation (WAT2021)</title> </titleInfo> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hideki</namePart> <namePart type="family">Nakayama</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Isao</namePart> <namePart type="family">Goto</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hideya</namePart> <namePart type="family">Mino</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chenchen</namePart> <namePart type="family">Ding</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Raj</namePart> <namePart type="family">Dabre</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Anoop</namePart> <namePart type="family">Kunchukuttan</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Shohei</namePart> <namePart type="family">Higashiyama</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hiroshi</namePart> <namePart type="family">Manabe</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Win</namePart> <namePart type="given">Pa</namePart> <namePart type="family">Pa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Shantipriya</namePart> <namePart type="family">Parida</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chenhui</namePart> <namePart type="family">Chu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Akiko</namePart> <namePart type="family">Eriguchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Kaori</namePart> <namePart type="family">Abe</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yusuke</namePart> <namePart type="family">Oda</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Katsuhito</namePart> <namePart type="family">Sudoh</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pushpak</namePart> <namePart type="family">Bhattacharyya</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>In this paper, we introduce our TMU Neural Machine Translation (NMT) system submitted for the Patent task (Korean Japanese and English Japanese) of 8th Workshop on Asian Translation (Nakazawa et al., 2021). Recently, several studies proposed pre-trained encoder-decoder models using monolingual data. One of the pre-trained models, BART (Lewis et al., 2020), was shown to improve translation accuracy via fine-tuning with bilingual data. However, they experimented only Romanian!English translation using English BART. In this paper, we examine the effectiveness of Japanese BART using Japan Patent Office Corpus 2.0. Our experiments indicate that Japanese BART can also improve translation accuracy in both Korean Japanese and English Japanese translations.</abstract> <identifier type="citekey">kim-komachi-2021-tmu</identifier> <identifier type="doi">10.18653/v1/2021.wat-1.13</identifier> <location> <url>https://aclanthology.org/2021.wat-1.13</url> </location> <part> <date>2021-08</date> <extent unit="page"> <start>133</start> <end>137</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T TMU NMT System with Japanese BART for the Patent task of WAT 2021 %A Kim, Hwichan %A Komachi, Mamoru %Y Nakazawa, Toshiaki %Y Nakayama, Hideki %Y Goto, Isao %Y Mino, Hideya %Y Ding, Chenchen %Y Dabre, Raj %Y Kunchukuttan, Anoop %Y Higashiyama, Shohei %Y Manabe, Hiroshi %Y Pa, Win Pa %Y Parida, Shantipriya %Y Bojar, Ondřej %Y Chu, Chenhui %Y Eriguchi, Akiko %Y Abe, Kaori %Y Oda, Yusuke %Y Sudoh, Katsuhito %Y Kurohashi, Sadao %Y Bhattacharyya, Pushpak %S Proceedings of the 8th Workshop on Asian Translation (WAT2021) %D 2021 %8 August %I Association for Computational Linguistics %C Online %F kim-komachi-2021-tmu %X In this paper, we introduce our TMU Neural Machine Translation (NMT) system submitted for the Patent task (Korean Japanese and English Japanese) of 8th Workshop on Asian Translation (Nakazawa et al., 2021). Recently, several studies proposed pre-trained encoder-decoder models using monolingual data. One of the pre-trained models, BART (Lewis et al., 2020), was shown to improve translation accuracy via fine-tuning with bilingual data. However, they experimented only Romanian!English translation using English BART. In this paper, we examine the effectiveness of Japanese BART using Japan Patent Office Corpus 2.0. Our experiments indicate that Japanese BART can also improve translation accuracy in both Korean Japanese and English Japanese translations. %R 10.18653/v1/2021.wat-1.13 %U https://aclanthology.org/2021.wat-1.13 %U https://doi.org/10.18653/v1/2021.wat-1.13 %P 133-137
Markdown (Informal)
[TMU NMT System with Japanese BART for the Patent task of WAT 2021](https://aclanthology.org/2021.wat-1.13) (Kim & Komachi, WAT 2021)
- TMU NMT System with Japanese BART for the Patent task of WAT 2021 (Kim & Komachi, WAT 2021)
ACL
- Hwichan Kim and Mamoru Komachi. 2021. TMU NMT System with Japanese BART for the Patent task of WAT 2021. In Proceedings of the 8th Workshop on Asian Translation (WAT2021), pages 133–137, Online. Association for Computational Linguistics.