@inproceedings{mhaskar-etal-2021-multilingual,
title = "Multilingual Machine Translation Systems at {WAT} 2021: One-to-Many and Many-to-One Transformer based {NMT}",
author = "Mhaskar, Shivam and
Jain, Aditya and
Banerjee, Aakash and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the 8th Workshop on Asian Translation (WAT2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wat-1.28",
doi = "10.18653/v1/2021.wat-1.28",
pages = "233--237",
abstract = "In this paper, we present the details of the systems that we have submitted for the WAT 2021 MultiIndicMT: An Indic Language Multilingual Task. We have submitted two separate multilingual NMT models: one for English to 10 Indic languages and another for 10 Indic languages to English. We discuss the implementation details of two separate multilingual NMT approaches, namely one-to-many and many-to-one, that makes use of a shared decoder and a shared encoder, respectively. From our experiments, we observe that the multilingual NMT systems outperforms the bilingual baseline MT systems for each of the language pairs under consideration.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mhaskar-etal-2021-multilingual">
<titleInfo>
<title>Multilingual Machine Translation Systems at WAT 2021: One-to-Many and Many-to-One Transformer based NMT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shivam</namePart>
<namePart type="family">Mhaskar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aakash</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Asian Translation (WAT2021)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present the details of the systems that we have submitted for the WAT 2021 MultiIndicMT: An Indic Language Multilingual Task. We have submitted two separate multilingual NMT models: one for English to 10 Indic languages and another for 10 Indic languages to English. We discuss the implementation details of two separate multilingual NMT approaches, namely one-to-many and many-to-one, that makes use of a shared decoder and a shared encoder, respectively. From our experiments, we observe that the multilingual NMT systems outperforms the bilingual baseline MT systems for each of the language pairs under consideration.</abstract>
<identifier type="citekey">mhaskar-etal-2021-multilingual</identifier>
<identifier type="doi">10.18653/v1/2021.wat-1.28</identifier>
<location>
<url>https://aclanthology.org/2021.wat-1.28</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>233</start>
<end>237</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Machine Translation Systems at WAT 2021: One-to-Many and Many-to-One Transformer based NMT
%A Mhaskar, Shivam
%A Jain, Aditya
%A Banerjee, Aakash
%A Bhattacharyya, Pushpak
%S Proceedings of the 8th Workshop on Asian Translation (WAT2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F mhaskar-etal-2021-multilingual
%X In this paper, we present the details of the systems that we have submitted for the WAT 2021 MultiIndicMT: An Indic Language Multilingual Task. We have submitted two separate multilingual NMT models: one for English to 10 Indic languages and another for 10 Indic languages to English. We discuss the implementation details of two separate multilingual NMT approaches, namely one-to-many and many-to-one, that makes use of a shared decoder and a shared encoder, respectively. From our experiments, we observe that the multilingual NMT systems outperforms the bilingual baseline MT systems for each of the language pairs under consideration.
%R 10.18653/v1/2021.wat-1.28
%U https://aclanthology.org/2021.wat-1.28
%U https://doi.org/10.18653/v1/2021.wat-1.28
%P 233-237
Markdown (Informal)
[Multilingual Machine Translation Systems at WAT 2021: One-to-Many and Many-to-One Transformer based NMT](https://aclanthology.org/2021.wat-1.28) (Mhaskar et al., WAT 2021)
ACL