@inproceedings{khatri-etal-2021-language-model,
title = "Language Model Pretraining and Transfer Learning for Very Low Resource Languages",
author = "Khatri, Jyotsana and
Murthy, Rudra and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the Sixth Conference on Machine Translation",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wmt-1.106",
pages = "995--998",
abstract = "This paper describes our submission for the shared task on Unsupervised MT and Very Low Resource Supervised MT at WMT 2021. We submitted systems for two language pairs: German ↔ Upper Sorbian (de ↔ hsb) and German-Lower Sorbian (de ↔ dsb). For de ↔ hsb, we pretrain our system using MASS (Masked Sequence to Sequence) objective and then finetune using iterative back-translation. Final finetunng is performed using the parallel data provided for translation objective. For de ↔ dsb, no parallel data is provided in the task, we use final de ↔ hsb model as initialization of the de ↔ dsb model and train it further using iterative back-translation, using the same vocabulary as used in the de ↔ hsb model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khatri-etal-2021-language-model">
<titleInfo>
<title>Language Model Pretraining and Transfer Learning for Very Low Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jyotsana</namePart>
<namePart type="family">Khatri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rudra</namePart>
<namePart type="family">Murthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Conference on Machine Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our submission for the shared task on Unsupervised MT and Very Low Resource Supervised MT at WMT 2021. We submitted systems for two language pairs: German ↔ Upper Sorbian (de ↔ hsb) and German-Lower Sorbian (de ↔ dsb). For de ↔ hsb, we pretrain our system using MASS (Masked Sequence to Sequence) objective and then finetune using iterative back-translation. Final finetunng is performed using the parallel data provided for translation objective. For de ↔ dsb, no parallel data is provided in the task, we use final de ↔ hsb model as initialization of the de ↔ dsb model and train it further using iterative back-translation, using the same vocabulary as used in the de ↔ hsb model.</abstract>
<identifier type="citekey">khatri-etal-2021-language-model</identifier>
<location>
<url>https://aclanthology.org/2021.wmt-1.106</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>995</start>
<end>998</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language Model Pretraining and Transfer Learning for Very Low Resource Languages
%A Khatri, Jyotsana
%A Murthy, Rudra
%A Bhattacharyya, Pushpak
%S Proceedings of the Sixth Conference on Machine Translation
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F khatri-etal-2021-language-model
%X This paper describes our submission for the shared task on Unsupervised MT and Very Low Resource Supervised MT at WMT 2021. We submitted systems for two language pairs: German ↔ Upper Sorbian (de ↔ hsb) and German-Lower Sorbian (de ↔ dsb). For de ↔ hsb, we pretrain our system using MASS (Masked Sequence to Sequence) objective and then finetune using iterative back-translation. Final finetunng is performed using the parallel data provided for translation objective. For de ↔ dsb, no parallel data is provided in the task, we use final de ↔ hsb model as initialization of the de ↔ dsb model and train it further using iterative back-translation, using the same vocabulary as used in the de ↔ hsb model.
%U https://aclanthology.org/2021.wmt-1.106
%P 995-998
Markdown (Informal)
[Language Model Pretraining and Transfer Learning for Very Low Resource Languages](https://aclanthology.org/2021.wmt-1.106) (Khatri et al., WMT 2021)
ACL