@inproceedings{zhang-etal-2021-noahnmt,
title = "{N}oah{NMT} at {WMT} 2021: Dual Transfer for Very Low Resource Supervised Machine Translation",
author = "Zhang, Meng and
Wu, Minghao and
Li, Pengfei and
Li, Liangyou and
Liu, Qun",
booktitle = "Proceedings of the Sixth Conference on Machine Translation",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wmt-1.108",
pages = "1009--1013",
abstract = "This paper describes the NoahNMT system submitted to the WMT 2021 shared task of Very Low Resource Supervised Machine Translation. The system is a standard Transformer model equipped with our recent technique of dual transfer. It also employs widely used techniques that are known to be helpful for neural machine translation, including iterative back-translation, selected finetuning, and ensemble. The final submission achieves the top BLEU for three translation directions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2021-noahnmt">
<titleInfo>
<title>NoahNMT at WMT 2021: Dual Transfer for Very Low Resource Supervised Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minghao</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengfei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liangyou</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Conference on Machine Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the NoahNMT system submitted to the WMT 2021 shared task of Very Low Resource Supervised Machine Translation. The system is a standard Transformer model equipped with our recent technique of dual transfer. It also employs widely used techniques that are known to be helpful for neural machine translation, including iterative back-translation, selected finetuning, and ensemble. The final submission achieves the top BLEU for three translation directions.</abstract>
<identifier type="citekey">zhang-etal-2021-noahnmt</identifier>
<location>
<url>https://aclanthology.org/2021.wmt-1.108</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>1009</start>
<end>1013</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NoahNMT at WMT 2021: Dual Transfer for Very Low Resource Supervised Machine Translation
%A Zhang, Meng
%A Wu, Minghao
%A Li, Pengfei
%A Li, Liangyou
%A Liu, Qun
%S Proceedings of the Sixth Conference on Machine Translation
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F zhang-etal-2021-noahnmt
%X This paper describes the NoahNMT system submitted to the WMT 2021 shared task of Very Low Resource Supervised Machine Translation. The system is a standard Transformer model equipped with our recent technique of dual transfer. It also employs widely used techniques that are known to be helpful for neural machine translation, including iterative back-translation, selected finetuning, and ensemble. The final submission achieves the top BLEU for three translation directions.
%U https://aclanthology.org/2021.wmt-1.108
%P 1009-1013
Markdown (Informal)
[NoahNMT at WMT 2021: Dual Transfer for Very Low Resource Supervised Machine Translation](https://aclanthology.org/2021.wmt-1.108) (Zhang et al., WMT 2021)
ACL