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Abstract

This paper describes the Volctrans’ submission
to the WMT21 news translation shared task
for German→English translation. We build
a parallel (i.e., non-autoregressive) translation
system using the Glancing Transformer (Qian
et al., 2020), which enables fast and accu-
rate parallel decoding in contrast to the cur-
rently prevailing autoregressive models. To
the best of our knowledge, this is the first par-
allel translation system that can be scaled to
such a practical scenario like WMT competi-
tion. More importantly, our parallel translation
system achieves the best BLEU score (35.0)
on German→English translation task, outper-
forming all strong autoregressive counterparts.

1 Introduction

In recent years’ WMT competitions, most teams
develop their translation systems based on autore-
gressive models, such as Transformer (Vaswani
et al., 2017). Although autoregressive mod-
els (AT) achieve strong results, it is also worth
exploring other alternative machine translation
paradigm. Therefore, we build our systems with
non-autoregressive translation (NAT) models (Gu
et al., 2018). Unlike the left-to-right decoding in
the autoregressive models, the NAT models employ
the more efficient parallel decoding. Specifically,
our system employs single-pass parallel decoding,
which generates all the tokens in parallel at one
time, thus can accelerate decoding speed.

In this paper, we would like to present the best
practice we explored in this year’s competition for
our parallel translation system, aiming at achieving
top results while preserving decoding efficiency.

System Overview. To achieve this, we improve
the parallel translation system in several aspects,
including better model architectures, various data

∗Equal contributions.

exploitation methods, mutli-stage training strategy,
and inference with effective reranking techniques.
For model architectures (§2), we build the parallel
translation system based on the Glancing Trans-
former (GLAT, Qian et al., 2020). Besides, our
system employs dynamic linear combination of
layers (DLCL, Wang et al., 2019) for training deep
models. For data exploitation (§3), we first filter
data with multiple strategies. After filtering, we
use the Transformer (Vaswani et al., 2017) to syn-
thesize various distilled data. For training (§4), the
NAT models employ multi-stage training to better
exploit the distilled data. At inference phase (§5),
the system generates the final results by reranking
candidate hypothesis from multiple parallel gener-
ation models.

With the proposed techniques, our parallel trans-
lation system surpasses autoregressive models, and
achieves the highest BLEU score (35.0) in the
German→English translation task. Such results
show that parallel translation system not only has
great decoding efficiency, but also could achieve
better performance compared to the autoregresssive
counterparts.

2 Backbone Model Architecture

As depicted in Figure 1, our submitted system em-
ploys GLAT (Qian et al., 2020) as our backbone
model architecture, and includes an auxiliary de-
coder in GLAT for achieving better translation per-
formance. GLAT is a method for training non-
autoregressive models rather than a model archi-
tecture, which adaptively samples target tokens in
training. Although the target token sampling in
GLAT helps training, it also introduces a gap be-
tween training and inference. To close the gap,
we introduce the auxiliary decoder that shares the
same encoder with the GLAT decoder, which is
only used for training in a multi-tasking fashion.
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Figure 1: Illustration of our backbone model architec-
ture: Glancing Transformer with an auxiliary decoder.

Besides, we train models with three architecture
settings to increase model diversity.

2.1 Glancing Transformer

GLAT has three components: the encoder, the de-
coder, and the length predictor. The architecture
of GLAT is built upon the Transformer (Vaswani
et al., 2017). The encoder is the same as that of
Transformer, and the decoder is different from the
Transformer decoder in the attention mask. Trans-
former employs attention mask in self-attention
layer to prevent decoder representations attending
to subsequent positions. Since GLAT generates
sentences in parallel, the decoder of GLAT has no
attention mask and uses global context in decoding.
The details of the length predictor is described in
Section 2.3.

To reduce the difficulty of training deep mod-
els, we also employ dynamic linear combination
of layers (DLCL, Wang et al., 2019) in the archi-
tecture. With DLCL, the input of each layer is the
linear combination of outputs from all the previous
layers.

Given the source input X = {x1, x2, ..., xN}
and the target output Y = {y1, y2, ..., yT }, we use
the glancing language model (Qian et al., 2020) in
training. The model performs two decoding during
training. In the first decoding, the model generates
the sentence Ŷ in parallel. Then, the model ran-
domly selects a subset of tokens GS(Y, Ŷ ) in the
target sentence Y :

GS(Y, Ŷ ) = Random(Y, S(Y, Ŷ )) (1)

where Random(Y, S) means randomly sample S
tokens in Y . And the sampling number S(Y, Ŷ )
is computed by S(Y, Ŷ ) = α · d(Y, Ŷ ). d(Y, Ŷ )
is the Hamming distance between the first decod-
ing result Ŷ and the target sentence Y , and α is a

hyper-parameter for controlling the sampling num-
ber more flexibly.

In the second decoding, the model replaces part
of the original decoder input representations with
the embeddings of tokens in GS(Y, Ŷ ). Specifi-
cally, the token yi is used to replace the input rep-
resentation at position i. With the replaced decoder
inputs, the model learns to predict the remaining
words and compute the training loss:

Lglm =
∑

yt∈GS(Y,Ŷ )

log p(yt|GS(Y, Ŷ ), X) (2)

where GS(Y, Ŷ ) is the subset of tokens in Y that
are not selected. In training, the model starts from
learning to generate sentence fragments and grad-
ually learning the parallel generation of the whole
sequence.

2.2 Auxiliary Decoder

Although the sampled target words in GLAT train-
ing help the model learn target word interdependen-
cies, they also introduce a gap between training and
inference as the model cannot obtain target word
inputs in inference. Therefore, we add an auxiliary
non-autoregressive decoder to close the gap. The
auxiliary decoder shares the same encoder with the
GLAT decoder and directly learns to predict the
whole sequence in parallel. With the auxiliary de-
coder, we compute the loss for predicting the whole
sequence:

Laux =

T∑
t=1

logPaux(yt|X) (3)

where Paux is the output probability of the auxiliary
decoder. We jointly train the two decoders and the
training loss of model is:

Lgen = Lglm + λLaux (4)

Note that the auxiliary decoder is only used in train-
ing and has no additional cost in inference.

2.3 Length Prediction

To enable parallel generation, the model predicts
the target length before decoding. We use the aver-
age of encoder hidden states Havg as the represen-
tation to predict the length of target sentence. The
probability of the target length is computed by:

Plen = softmax(H>avgElen) (5)
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Figure 2: Overview of Volctrans GLAT System. Each grey block denotes a part of the system, the details can be
found in Section 3: Data Preparation, Section 4: Multi-Stage Training, and Section 5: Inference.

where Elen is the embeddings of length. Instead
of directly predicting the target length, the imple-
mented model predicts the length difference be-
tween input and output, which is easier to learn.
We use cross entropy loss for optimizing Plen and
train the length predictor with the generation mod-
ule jointly.

2.4 Model Variants

As shown in Figure 2, in order to increase the di-
versity of models, we use three model architecture
settings for GLAT. The details of the three GLAT
architecture variants are:

• GLAT-base: Following Wu et al. (2020);Sun
et al. (2019), we increase the number of en-
coder layers and use 16 encoder layers for
GLAT-base. For decoders, we use 6 layers
for the original decoder and 2 layers for the
auxiliary decoder. As for other model hyper-
parameters, we use the 1024 hidden dimen-
sion and 16 attention heads, which are the
same as the setting of Transformer-big.

• GLAT-deep: We further increase the number
of encoder layers to 32 for GLAT-deep. To
keep the number of model parameters on the

same scale, we decrease the hidden dimension
to 768.

• GLAT-wide: Following previous work (Wu
et al., 2020), we also expand the dimension
of the feed-forward inner layer to construct
GLAT-wide. We set the feed-forward dimen-
sion to 12288 and the encoder layer number
to 12.

3 Data Preparation

In this section, we will describe our best practice of
distilled data construction by employing AT mod-
els. As illustrated in data preparation in Figure 2,
we will first depict the general procedure of data fil-
tering and preprocessing of the provided raw data,
followed by the training details of the AT models.
Finally, we will describe how we produced distilled
data given the trained AT models. The resulting
distilled data will be used for training our GLAT
system.

3.1 Data Filtering and Preprocessing
Data quality matters in machine translation systems.
To obtain high-quality data, we employ rule-based
heuristics, language detection, word alignment and
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similarity-based retrieval to filter the provided par-
allel and monolingual corpora.

Rule-based Data Filtering
Based on experiences and WMT reports in previous
years, we first preprocess raw data based on rules:

• Data deduplication.
• Delete parallel data with the same source and

target.
• Remove special tokens and unprintable to-

kens.
• Remove HTML tags and inline URLs.
• Remove words or characters that repeat more

than 5 times.
• Delete sentences that are too long (more than

200 words) or too short (less than 5 words), as
well as the parallel data whose length-ratios of
source and target sentences are out of balance.

Parallel Data Filtering
After completing the rule-based filtering, we fur-
ther filtered parallel data via language detection
and its parallelism. The filtering process consists
of three stages:

1. Coarse-grained filtering: We filter parallel cor-
pus according to the results and ratio of lan-
guage detection. We use the pycld31 library
to filter German→English sentence pairs with
a language likelihood greater than 0.8 and a
language ratio greater than 60%.

2. Word alignment learning: We use fast
align (Dyer et al., 2013)2 to automatically
learn German→English word alignment on
the coarsely filtered corpus.

3. Fine-grained filtering: We filter the sentences
with an align score greater than five on all
parallel corpora and sort them through the
vocabulary learned by fast align.

Note that the amount of data in different corpora is
not balanced. We split the data into the paracrawl
group and the non-paracrawl group. We filter out
about 10% of the data in the non-paracrawl group
and 20% of the data in the paracrawl group.

Monolingual Data Filtering
For monolingual data, we first use the pycld3 li-
brary to filter the data of low scores, similar to the
coarse-grained filtering of parallel data.

Considering that monolingual data is too large,
we searched for some of the most relevant sen-

1https://pypi.org/project/pycld3/
2https://github.com/clab/fast_align

German (De) English (En)

parallel data 75M

monolingual data 86M 105M

Table 1: Statistics of the training data after preprocess-
ing and filtering.

tences in our distilled data through sentence re-
trieval. We sample news domain sentences from
the previous years’ dev set and newscrawl corpus,
and train a sentence BERT (Reimers and Gurevych,
2019)3 to retrieve the sentences on the monolin-
gual corpus. In detail, for each sampled news sen-
tence, we calculate the inner product of sentence
embedding between it and some random monolin-
gual sentences (as the entire corpus is too large),
where the sentence embedding is calculated with
the sentence BERT model. We retrieved the top
8000 sentences for each news sample according to
the inner product of sentence embedding. Finally,
we deduplicate the retrieved sentences to obtain the
final monolingual data.

Data Preprocessing
Once we obtained filtered data, we preprocess them
through the following steps:

1. Normalization: we use Moses tokenizer to
normalize the punctuation.

2. Tokenization: we use Moses tokenizer to tok-
enize all datasets.

3. Truecasing: we use Moses truecaser to learn
and apply truecasing on all datasets.

4. Subword segmentation: we use our proposed
VOLT (Xu et al., 2021), which learns vocab-
ularies via optimal transport, to split tokens
into subwords, resulting in a joint vocabulary
of a size of 12k subwords.

We summarize the statistics of the final datasets in
Table 1.

3.2 Training of AT Systems

In this section, we describe our AT systems, which
served to distill data for GLAT training. Over-
all, we first train a pair of German→English and
English→German AT systems purely using parallel
data. We then exploit source and target monolin-
gual data to create synthetic parallel data to further
improve the AT models. Besides, we leverage the

3https://github.com/UKPLab/
sentence-transformers

https://pypi.org/project/pycld3/
https://github.com/clab/fast_align
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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testsets from previous years to fine-tune the AT
models for in-domain adaptation.

Hyperparameters. The AT models are Trans-
former models with 12 layers of encoder and de-
coder. We use the implementations in Fairseq (Ott
et al., 2019). All models are trained with Adam op-
timizer (Kingma and Ba, 2014). We use the inverse
sqrt learning rate scheduler with 4000 warm-up
steps and set the maximum learning rate to 5 ·10−4.
The betas are (0.9, 0.98). We use multiple GPUs
during training, resulting in an approximate total
effective batch size of 128k tokens. During train-
ing, we employ label smoothing (Szegedy et al.,
2016) of 0.1 and set dropout rate (Srivastava et al.,
2014) to 0.3.

Iterative Back Translation

Zhang et al. (2018) proposed an iterative joint train-
ing method for better usage of monolingual data
from the source language (i.e., German) and tar-
get language (i.e., English). In each iteration, the
German→English model generates forward syn-
thetic data from the German monolingual data, and
the English→German model generates backward
synthetic data from the English monolingual data.
Then, the German→English and English→German
models are trained with the new forward and back-
ward synthetic data to improve both models’ perfor-
mance, in which the target-side data are assumed
to be the authentic ones from the monolingual cor-
pus. In the next iteration, the German→English
and English→German models can generate syn-
thetic data with better quality, and their perfor-
mance can be further improved . We jointly train
the German→English and English→German mod-
els for 3 iterations.

In-domain Finetuning

We fine-tune the trained model on the previous
years’ testsets to obtain in-domain knowledge,
which is a widely used technique in previous
years’ WMT (Li et al., 2019). Specifically, we use
WMT19 German→English testset as in-domain
data. We set the learning rate to 1e-4 without a
learning rate scheduler and the max tokens per
batch as 4096. We then fine-tune the model for
30 steps4.

4Since the size of the in-domain data is small, fine-tuning
with more steps will overfit the data.

De-En En-De

baseline 39.34 35.10
iterative BT 43.56 36.85

in-domain FT 44.00 38.30

forward translation 44.05 39.50
final training 44.15 39.70

Table 2: BLEU scores of AT models on newstest20
with respect to different training stages.

Forward Translation
Bogoychev and Sennrich (2019) observed that
on the sentences that are originally in the source
language, which is the case of the test sets of
this year’s WMT, the forward translation could
bring significantly more improvement than back-
translation. We thus use the finetuned model, ob-
tained by the aforementioned in-domain finetuning,
to translate source monolingual corpus to obtain
forward translation data. We then apply these for-
ward translation data to finetune our AT models.

Finally, we combine all the parallel data, back-
translation data, and forward translation data to
further finetune our AT models. Table 2 shows
the performance of the AT models with respect
with each training stage. The resulting AT models
are ready for constructing distilled data for GLAT
training.

3.3 Constructing Distilled Data for GLAT
One of the widely known difficulties of training
NAT models is the multi-modality problem (Gu
et al., 2018). In the raw training data, the target
tokens have strong correlations across different po-
sitions, which is hard to capture by NAT models
due to the conditional independence assumption.
A key ingredient in the training recipe for most of
the NAT models is constructing training data via
sequence-level knowledge distillation (Kim and
Rush, 2016), where the target-side of the training
data is replaced by the forward translation of AT
models.

Note that previous work did not leverage exist-
ing large-scale monolingual data in training GLAT
models, either from source or target language. In
this work, we applied sequence-level knowledge
distillation to parallel data and monolingual data
from both source and target languages.

• Parallel data and source monolingual data dis-
tillation (119M sentences). We directly use
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Figure 3: Learning curves of different finetuning strate-
gies, reported on newstest20, De→En. The light
blue curve denotes training with inverse square root
scheduler where the peak learning rate equals 5 · 10−4,
and the initial sampling ratio λ is set to 0.5, the dark
blue curve denotes training with a constant learning
rate of 1e− 4 and λ = 0.1.

German→English AT model to obtain the for-
ward translations of the German sentences.

• Monolingual target data distillation (39M sen-
tences). The way to exploiting target mono-
lingual data is not as evident as using the
monolingual source data since the purpose of
knowledge distillation is to construct a pseudo-
parallel dataset where synthetic ones replace
the actual target sentences. To this end, we
propose a cycle distilling technique. We use
the backward English→German AT model to
back-translate the monolingual target data, re-
sulting in a translated source dataset. We then
used the German→English AT model to get
the round-trip forward translation of the trans-
lated source dataset, obtaining the cycle dis-
tilled data. We will refer to this as cycle KD
data.

4 Multi-Stage Training

We train our parallel translation system in a multi-
stage way (See Multi-Stage Training in Figure 2).
In the first stage, the model uses the distilled par-
allel and source monolingual data for training. In
the second stage, we train the model with the tar-
get monolingual data (aka. cycle KD data). After
training the model on large-scale distilled data until
convergence, we finetune the model on small-scale
in-domain data.

4.1 General-Domain Training

All models are trained with Adam optimizer with
decoupled weight decay (Kingma and Ba, 2014;

dropout

learning rate
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Figure 4: BLEU score versus the dropout and learning
rate, reported on newstest20, De→En.

Loshchilov and Hutter, 2017). We use the inverse
sqrt learning rate scheduler with 4000 warm-up
steps and set the maximum learning rate to 5 ·10−4.
The adam betas are (0.9, 0.999).

4.2 Resuming Training

We often have to load a pre-trained checkpoint and
continuously train the model on a new dataset. The
loaded checkpoint serves as a good initialization,
and the parameters may change significantly in this
process.

We found that it is not easy to apply the tech-
niques from auto-regressive translation to GLAT
directly. Preliminary experiments show that if we
employ the techniques illustrated in (Qian et al.,
2020) during the finetuning stage, the BLEU score
will degrade dramatically and then increase slowly
until convergence. The number of total update steps
required for convergence is similar to training from
scratch on a new dataset. There are mainly two con-
cerns. Firstly, GLAT employs the inverse square
root learning rate scheduler. The learning rate will
increase to 5 · 10−4 linearly and decay exponen-
tially until the training process is over (the learning
rate is close to 1e−4). During the finetuning stage,
a constant learning rate no larger than 1e− 4 will
stabilize the training process. Secondly, the ini-
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In-Domain Data GLAT-I GLAT-II

- 0.00 +2.20
Raw +1.51 +2.21

Distilled I +0.30 +1.99
Distilled II +1.56 +2.31

Table 3: Results of different adaptation pipelines.
GLAT-I and GLAT-II are models trained with distilled
training data generated by AT Model I and AT Model II
in Figure 5, respectively. After training, we use the in-
domain data Distilled I and Distilled II for fine-tuning.

tial sampling ratio λ = 0.5 in (Qian et al., 2020)
can be too large for finetuning since the model can
already do a good job in the translation task. A
large sampling ratio may cause the model to suf-
fer from “exposure bias”(Zhang et al., 2019): the
gap between training (where some target words are
provided) and validation (where no target words
are provided). Figure 3 illustrates the comparison
between two different finetuning strategies.

4.3 In-Domain Adaptation

When finetuning the model on small-scale in-
domain data, which is widely used for domain
adaptation (Meng et al., 2020), the parameters of
the model do not change significantly.

For domain adaptation, we perform grid search
on four group of hyper-parameters: learning rate(
1e−5, 3e−5, 1e−4), dropout(0.0, 0.1, 0.3), sam-
pling rate λ (0.3, 0.1), and max number of tokens
per batch (2000, 4000, 8000). For each combina-
tion, we conduct two experiments to reduce the
variance. Experimental results (Figure 4) show that
the learning rate and dropout rate are the most sig-
nificant factors. Interestingly, when dropout is set
to 0, the performance is surprisingly great, which
indicates the effectiveness of over-fitting on an in-
domain dataset.

feature groups feature number

GLAT score 3
AT 16e6d 3
AT 12e12d 3
Self BLEU 1
Self Chrf 1

Table 4: Selected Features.

Model BLEU Self-R AT-R

GLAT-base (w/o AUX) 42.28 42.54 42.90
+ CTC 41.04 - -
+ AUX 43.1 43.11 43.52

Table 5: Results of different architectures, reported on
newstest20, De→En.

There are several feasible pipelines for domain
adaptation due to the interaction between auto-
regressive and non-autoregressive models. Figure
5 illustrates these pipelines, and the key points are
listed as follows:

• Should we finetune the auto-regressive model
on the in-domain dataset (AT Model I→AT
Model II)?

• Should we use the original in-domain dataset
for GLAT’s model adaptation or the in-
domain dataset distilled by AT model I, or
the in-domain dataset distilled by AT Model
II?

Table 3 shows the results of different pipelines.
Experiments show that making domain adaptation
on the autoregressive model can boost the perfor-
mance of the non-autoregressive model. It is also
beneficial to further finetune the non-autoregressive
model on the distilled in-domain dataset.

5 Inference

In this section, we introduce two approaches for
GLAT’s inference: Noisy parallel decoding (NPD)
and Reranking (See Inference in Figure 2). NPD
is easy to integrate into a single model and im-
prove the performance; Reranking can help push
the performance to the limit: generating as many
candidates as possible and ranking them with as
many features as possible.

5.1 Noisy Parallel Decoding
A simple yet efficient inference approach is noisy
parallel decoding (NPD) (Gu et al., 2018). We
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GLAT-base GLAT-deep GLAT-wide

Model BLEU Self-R AT-R BLEU Self-R AT-R BLEU Self-R AT-R

baseline 43.10 43.11 43.52 42.44 43.89 43.14 43.38 43.49 43.81
+ cycle KD 43.40 43.24 43.77 42.86 43.51 43.73 43.51 43.49 43.79
+ adaptation 43.76 43.67 44.00 43.00 43.69 43.82 43.76 43.91 43.94

+ reranker 44.64∗

Table 6: Final results, reported on newstest20, De→En. ∗ denotes the submitted system (BLEU=35.0 on
newstest21, De→En). The baseline is GLAT w/ AUX.

first predict m target length candidates (in Table
5, m = 5), then generate output sequences with
argmax decoding for each target length candidate.
Then we use a model to rank these sequences and
identify the best overall output as the final output. If
the model for ranking and the one for generation is
the same model (GLAT), we call it Self-Reranking;
if the ranking model is AT, we call it AT-Reranking.

5.2 Reranking

We use kbmira5 to re-rank hypotheses. We first
train GLAT model variants of different settings,
each of which produces a set of candidates via the
various search algorithm in Section 2.4. For each
source sentence, every model outputs 7 hypothe-
sis candidates and a total of 252 translations are
collected for re-ranking. Then we compute 44 fea-
tures for each hypothesis, out of which 11 features
are finally used. The selected features are listed in
Table 4. The kbmira algorithm takes these features
to select the best hypothesis from these candidates.
Note that the kbmira algorithm is optimized on
newstest19 and validated on newstest20 to
select the best feature combination. Instead of enu-
merating all the possible combinations (244), we
incrementally add feature groups to kbmira algo-
rithm for fast search.

It is considered as an ablation study to pre-
defined features. After selecting the best fea-
ture combination, we further search better kb-
mira weights to achieve higher BLEU scores on
newstest20.

6 Experiment

For our parallel translation system, we train three
GLAT variants with the distilled data, and get the

5https://github.com/moses-smt/
mosesdecoder

final outputs by reranking candidate hypothesis
obtained from multiple GLAT models.

6.1 Hyperparameters
We implement our models with Fairseq (Ott et al.,
2019). Our experiments are carried out on 4 ma-
chines with 8 NVIDIA V100 GPUs, each of which
has 32 GB memory. The number of tokens per
batch is set to 256k. The dropout rate is set to 0.3
for the first 100k steps. We reduce the dropout to
0.1 after 100k steps, which can contribute to an im-
provement of about 1 BLEU score (Figure 3). The
hyper-parameter λ for balancing Lglm and Laux is
set to 1.

6.2 Results
Our models are trained on the distilled parallel data
and the distilled source monolingual data firstly.
We experiment with various utilization of raw data,
but the results show that the usage of raw data
has no positive effect. The results of different ar-
chitectures can be found in Table 5. Self-R and
AT-R denote self-reranking and reranking with an
autoregressive model, respectively. Experimental
results show that the auxiliary decoder (AUX) ef-
fectively improves the performance by about 0.6
BLEU scores. For GLAT-base + CTC (Graves et al.,
2006), we first set the max output length to twice
the source input length and remove the blanks and
repeated tokens after generation. We find CTC does
not improve the performance and requires about
twice the training time for convergence.

Based on GLAT with AUX, we employ three
technologies to improve further: continuously train-
ing on the cycle KD data, domain adaptation, and
reranking with various features. Table 6 shows the
final results of our submitted system. Training on
the distilled target monolingual data can further im-
prove the performance by about 0.3 BLEU scores.
Since the domain adaptation has already been em-

https://github.com/moses-smt/mosesdecoder
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ployed in the AT model’s training process, the cycle
KD data has already contained information of the
in-domain data. However, the domain adaptation
on GLAT can still gain a slight improvement of
about 0.2. Moreover, an additional reranker with
more diverse features can boost the performance
by about 0.6.

7 Conclusion

In this paper, we introduced our system submitted
to the WMT2021 shared news translation task on
German→English. We build a parallel translation
system based on the Glancing Transformer (Qian
et al., 2020). Knowledge distillation, domain adap-
tation, reranking have proven effective in our sys-
tem. Our constrained parallel translation system
gets first place in the German→English translation
task with a 35.0 BLEU score.
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