The NiuTrans System for the WMT 2021 Efficiency Task
Chenglong Wang, Chi Hu, Yongyu Mu, Zhongxiang Yan, Siming Wu, Yimin Hu, Hang Cao, Bei Li, Ye Lin, Tong Xiao, Jingbo Zhu
Abstract
This paper describes the NiuTrans system for the WMT21 translation efficiency task. Following last year’s work, we explore various techniques to improve the efficiency while maintaining translation quality. We investigate the combinations of lightweight Transformer architectures and knowledge distillation strategies. Also, we improve the translation efficiency with graph optimization, low precision, dynamic batching, and parallel pre/post-processing. Putting these together, our system can translate 247,000 words per second on an NVIDIA A100, being 3× faster than our last year’s system. Our system is the fastest and has the lowest memory consumption on the GPU-throughput track. The code, model, and pipeline will be available at NiuTrans.NMT.- Anthology ID:
- 2021.wmt-1.76
- Volume:
- Proceedings of the Sixth Conference on Machine Translation
- Month:
- November
- Year:
- 2021
- Address:
- Online
- Editors:
- Loic Barrault, Ondrej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussa, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Tom Kocmi, Andre Martins, Makoto Morishita, Christof Monz
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 787–794
- Language:
- URL:
- https://aclanthology.org/2021.wmt-1.76
- DOI:
- Bibkey:
- Cite (ACL):
- Chenglong Wang, Chi Hu, Yongyu Mu, Zhongxiang Yan, Siming Wu, Yimin Hu, Hang Cao, Bei Li, Ye Lin, Tong Xiao, and Jingbo Zhu. 2021. The NiuTrans System for the WMT 2021 Efficiency Task. In Proceedings of the Sixth Conference on Machine Translation, pages 787–794, Online. Association for Computational Linguistics.
- Cite (Informal):
- The NiuTrans System for the WMT 2021 Efficiency Task (Wang et al., WMT 2021)
- Copy Citation:
- PDF:
- https://aclanthology.org/2021.wmt-1.76.pdf
Export citation
@inproceedings{wang-etal-2021-niutrans, title = "The {N}iu{T}rans System for the {WMT} 2021 Efficiency Task", author = "Wang, Chenglong and Hu, Chi and Mu, Yongyu and Yan, Zhongxiang and Wu, Siming and Hu, Yimin and Cao, Hang and Li, Bei and Lin, Ye and Xiao, Tong and Zhu, Jingbo", editor = "Barrault, Loic and Bojar, Ondrej and Bougares, Fethi and Chatterjee, Rajen and Costa-jussa, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Freitag, Markus and Graham, Yvette and Grundkiewicz, Roman and Guzman, Paco and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Kocmi, Tom and Martins, Andre and Morishita, Makoto and Monz, Christof", booktitle = "Proceedings of the Sixth Conference on Machine Translation", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.wmt-1.76", pages = "787--794", abstract = "This paper describes the NiuTrans system for the WMT21 translation efficiency task. Following last year{'}s work, we explore various techniques to improve the efficiency while maintaining translation quality. We investigate the combinations of lightweight Transformer architectures and knowledge distillation strategies. Also, we improve the translation efficiency with graph optimization, low precision, dynamic batching, and parallel pre/post-processing. Putting these together, our system can translate 247,000 words per second on an NVIDIA A100, being 3$\times$ faster than our last year{'}s system. Our system is the fastest and has the lowest memory consumption on the GPU-throughput track. The code, model, and pipeline will be available at NiuTrans.NMT.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="wang-etal-2021-niutrans"> <titleInfo> <title>The NiuTrans System for the WMT 2021 Efficiency Task</title> </titleInfo> <name type="personal"> <namePart type="given">Chenglong</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chi</namePart> <namePart type="family">Hu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yongyu</namePart> <namePart type="family">Mu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhongxiang</namePart> <namePart type="family">Yan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Siming</namePart> <namePart type="family">Wu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yimin</namePart> <namePart type="family">Hu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hang</namePart> <namePart type="family">Cao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Bei</namePart> <namePart type="family">Li</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ye</namePart> <namePart type="family">Lin</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tong</namePart> <namePart type="family">Xiao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jingbo</namePart> <namePart type="family">Zhu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2021-11</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Sixth Conference on Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Loic</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondrej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Markus</namePart> <namePart type="family">Freitag</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Roman</namePart> <namePart type="family">Grundkiewicz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tom</namePart> <namePart type="family">Kocmi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Andre</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This paper describes the NiuTrans system for the WMT21 translation efficiency task. Following last year’s work, we explore various techniques to improve the efficiency while maintaining translation quality. We investigate the combinations of lightweight Transformer architectures and knowledge distillation strategies. Also, we improve the translation efficiency with graph optimization, low precision, dynamic batching, and parallel pre/post-processing. Putting these together, our system can translate 247,000 words per second on an NVIDIA A100, being 3\times faster than our last year’s system. Our system is the fastest and has the lowest memory consumption on the GPU-throughput track. The code, model, and pipeline will be available at NiuTrans.NMT.</abstract> <identifier type="citekey">wang-etal-2021-niutrans</identifier> <location> <url>https://aclanthology.org/2021.wmt-1.76</url> </location> <part> <date>2021-11</date> <extent unit="page"> <start>787</start> <end>794</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T The NiuTrans System for the WMT 2021 Efficiency Task %A Wang, Chenglong %A Hu, Chi %A Mu, Yongyu %A Yan, Zhongxiang %A Wu, Siming %A Hu, Yimin %A Cao, Hang %A Li, Bei %A Lin, Ye %A Xiao, Tong %A Zhu, Jingbo %Y Barrault, Loic %Y Bojar, Ondrej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussa, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Kocmi, Tom %Y Martins, Andre %Y Morishita, Makoto %Y Monz, Christof %S Proceedings of the Sixth Conference on Machine Translation %D 2021 %8 November %I Association for Computational Linguistics %C Online %F wang-etal-2021-niutrans %X This paper describes the NiuTrans system for the WMT21 translation efficiency task. Following last year’s work, we explore various techniques to improve the efficiency while maintaining translation quality. We investigate the combinations of lightweight Transformer architectures and knowledge distillation strategies. Also, we improve the translation efficiency with graph optimization, low precision, dynamic batching, and parallel pre/post-processing. Putting these together, our system can translate 247,000 words per second on an NVIDIA A100, being 3\times faster than our last year’s system. Our system is the fastest and has the lowest memory consumption on the GPU-throughput track. The code, model, and pipeline will be available at NiuTrans.NMT. %U https://aclanthology.org/2021.wmt-1.76 %P 787-794
Markdown (Informal)
[The NiuTrans System for the WMT 2021 Efficiency Task](https://aclanthology.org/2021.wmt-1.76) (Wang et al., WMT 2021)
- The NiuTrans System for the WMT 2021 Efficiency Task (Wang et al., WMT 2021)
ACL
- Chenglong Wang, Chi Hu, Yongyu Mu, Zhongxiang Yan, Siming Wu, Yimin Hu, Hang Cao, Bei Li, Ye Lin, Tong Xiao, and Jingbo Zhu. 2021. The NiuTrans System for the WMT 2021 Efficiency Task. In Proceedings of the Sixth Conference on Machine Translation, pages 787–794, Online. Association for Computational Linguistics.