@inproceedings{vahtola-etal-2021-coping,
title = "Coping with Noisy Training Data Labels in Paraphrase Detection",
author = {Vahtola, Teemu and
Creutz, Mathias and
Sj{\"o}blom, Eetu and
Itkonen, Sami},
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wnut-1.32",
doi = "10.18653/v1/2021.wnut-1.32",
pages = "291--296",
abstract = "We present new state-of-the-art benchmarks for paraphrase detection on all six languages in the Opusparcus sentential paraphrase corpus: English, Finnish, French, German, Russian, and Swedish. We reach these baselines by fine-tuning BERT. The best results are achieved on smaller and cleaner subsets of the training sets than was observed in previous research. Additionally, we study a translation-based approach that is competitive for the languages with more limited and noisier training data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vahtola-etal-2021-coping">
<titleInfo>
<title>Coping with Noisy Training Data Labels in Paraphrase Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Teemu</namePart>
<namePart type="family">Vahtola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Creutz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eetu</namePart>
<namePart type="family">Sjöblom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sami</namePart>
<namePart type="family">Itkonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present new state-of-the-art benchmarks for paraphrase detection on all six languages in the Opusparcus sentential paraphrase corpus: English, Finnish, French, German, Russian, and Swedish. We reach these baselines by fine-tuning BERT. The best results are achieved on smaller and cleaner subsets of the training sets than was observed in previous research. Additionally, we study a translation-based approach that is competitive for the languages with more limited and noisier training data.</abstract>
<identifier type="citekey">vahtola-etal-2021-coping</identifier>
<identifier type="doi">10.18653/v1/2021.wnut-1.32</identifier>
<location>
<url>https://aclanthology.org/2021.wnut-1.32</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>291</start>
<end>296</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Coping with Noisy Training Data Labels in Paraphrase Detection
%A Vahtola, Teemu
%A Creutz, Mathias
%A Sjöblom, Eetu
%A Itkonen, Sami
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F vahtola-etal-2021-coping
%X We present new state-of-the-art benchmarks for paraphrase detection on all six languages in the Opusparcus sentential paraphrase corpus: English, Finnish, French, German, Russian, and Swedish. We reach these baselines by fine-tuning BERT. The best results are achieved on smaller and cleaner subsets of the training sets than was observed in previous research. Additionally, we study a translation-based approach that is competitive for the languages with more limited and noisier training data.
%R 10.18653/v1/2021.wnut-1.32
%U https://aclanthology.org/2021.wnut-1.32
%U https://doi.org/10.18653/v1/2021.wnut-1.32
%P 291-296
Markdown (Informal)
[Coping with Noisy Training Data Labels in Paraphrase Detection](https://aclanthology.org/2021.wnut-1.32) (Vahtola et al., WNUT 2021)
ACL