@inproceedings{straka-etal-2021-character,
title = "Character Transformations for Non-Autoregressive {GEC} Tagging",
author = "Straka, Milan and
N{\'a}plava, Jakub and
Strakov{\'a}, Jana",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)",
month = nov,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.wnut-1.46",
doi = "10.18653/v1/2021.wnut-1.46",
pages = "417--422",
abstract = "We propose a character-based non-autoregressive GEC approach, with automatically generated character transformations. Recently, per-word classification of correction edits has proven an efficient, parallelizable alternative to current encoder-decoder GEC systems. We show that word replacement edits may be suboptimal and lead to explosion of rules for spelling, diacritization and errors in morphologically rich languages, and propose a method for generating character transformations from GEC corpus. Finally, we train character transformation models for Czech, German and Russian, reaching solid results and dramatic speedup compared to autoregressive systems. The source code is released at \url{https://github.com/ufal/wnut2021_character_transformations_gec}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="straka-etal-2021-character">
<titleInfo>
<title>Character Transformations for Non-Autoregressive GEC Tagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Milan</namePart>
<namePart type="family">Straka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Náplava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jana</namePart>
<namePart type="family">Straková</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a character-based non-autoregressive GEC approach, with automatically generated character transformations. Recently, per-word classification of correction edits has proven an efficient, parallelizable alternative to current encoder-decoder GEC systems. We show that word replacement edits may be suboptimal and lead to explosion of rules for spelling, diacritization and errors in morphologically rich languages, and propose a method for generating character transformations from GEC corpus. Finally, we train character transformation models for Czech, German and Russian, reaching solid results and dramatic speedup compared to autoregressive systems. The source code is released at https://github.com/ufal/wnut2021_character_transformations_gec.</abstract>
<identifier type="citekey">straka-etal-2021-character</identifier>
<identifier type="doi">10.18653/v1/2021.wnut-1.46</identifier>
<location>
<url>https://aclanthology.org/2021.wnut-1.46</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>417</start>
<end>422</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Character Transformations for Non-Autoregressive GEC Tagging
%A Straka, Milan
%A Náplava, Jakub
%A Straková, Jana
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online
%F straka-etal-2021-character
%X We propose a character-based non-autoregressive GEC approach, with automatically generated character transformations. Recently, per-word classification of correction edits has proven an efficient, parallelizable alternative to current encoder-decoder GEC systems. We show that word replacement edits may be suboptimal and lead to explosion of rules for spelling, diacritization and errors in morphologically rich languages, and propose a method for generating character transformations from GEC corpus. Finally, we train character transformation models for Czech, German and Russian, reaching solid results and dramatic speedup compared to autoregressive systems. The source code is released at https://github.com/ufal/wnut2021_character_transformations_gec.
%R 10.18653/v1/2021.wnut-1.46
%U https://aclanthology.org/2021.wnut-1.46
%U https://doi.org/10.18653/v1/2021.wnut-1.46
%P 417-422
Markdown (Informal)
[Character Transformations for Non-Autoregressive GEC Tagging](https://aclanthology.org/2021.wnut-1.46) (Straka et al., WNUT 2021)
ACL