@inproceedings{zad-etal-2021-hell,
title = "Hell Hath No Fury? Correcting Bias in the {NRC} Emotion Lexicon",
author = "Zad, Samira and
Jimenez, Joshuan and
Finlayson, Mark",
editor = "Mostafazadeh Davani, Aida and
Kiela, Douwe and
Lambert, Mathias and
Vidgen, Bertie and
Prabhakaran, Vinodkumar and
Waseem, Zeerak",
booktitle = "Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.woah-1.11",
doi = "10.18653/v1/2021.woah-1.11",
pages = "102--113",
abstract = "There have been several attempts to create an accurate and thorough emotion lexicon in English, which identifies the emotional content of words. Of the several commonly used resources, the NRC emotion lexicon (Mohammad and Turney, 2013b) has received the most attention due to its availability, size, and its choice of Plutchik{'}s expressive 8-class emotion model. In this paper we identify a large number of troubling entries in the NRC lexicon, where words that should in most contexts be emotionally neutral, with no affect (e.g., {`}lesbian{'}, {`}stone{'}, {`}mountain{'}), are associated with emotional labels that are inaccurate, nonsensical, pejorative, or, at best, highly contingent and context-dependent (e.g., {`}lesbian{'} labeled as Disgust and Sadness, {`}stone{'} as Anger, or {`}mountain{'} as Anticipation). We describe a procedure for semi-automatically correcting these problems in the NRC, which includes disambiguating POS categories and aligning NRC entries with other emotion lexicons to infer the accuracy of labels. We demonstrate via an experimental benchmark that the quality of the resources is thus improved. We release the revised resource and our code to enable other researchers to reproduce and build upon results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zad-etal-2021-hell">
<titleInfo>
<title>Hell Hath No Fury? Correcting Bias in the NRC Emotion Lexicon</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samira</namePart>
<namePart type="family">Zad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joshuan</namePart>
<namePart type="family">Jimenez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Finlayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aida</namePart>
<namePart type="family">Mostafazadeh Davani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douwe</namePart>
<namePart type="family">Kiela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Lambert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bertie</namePart>
<namePart type="family">Vidgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinodkumar</namePart>
<namePart type="family">Prabhakaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>There have been several attempts to create an accurate and thorough emotion lexicon in English, which identifies the emotional content of words. Of the several commonly used resources, the NRC emotion lexicon (Mohammad and Turney, 2013b) has received the most attention due to its availability, size, and its choice of Plutchik’s expressive 8-class emotion model. In this paper we identify a large number of troubling entries in the NRC lexicon, where words that should in most contexts be emotionally neutral, with no affect (e.g., ‘lesbian’, ‘stone’, ‘mountain’), are associated with emotional labels that are inaccurate, nonsensical, pejorative, or, at best, highly contingent and context-dependent (e.g., ‘lesbian’ labeled as Disgust and Sadness, ‘stone’ as Anger, or ‘mountain’ as Anticipation). We describe a procedure for semi-automatically correcting these problems in the NRC, which includes disambiguating POS categories and aligning NRC entries with other emotion lexicons to infer the accuracy of labels. We demonstrate via an experimental benchmark that the quality of the resources is thus improved. We release the revised resource and our code to enable other researchers to reproduce and build upon results.</abstract>
<identifier type="citekey">zad-etal-2021-hell</identifier>
<identifier type="doi">10.18653/v1/2021.woah-1.11</identifier>
<location>
<url>https://aclanthology.org/2021.woah-1.11</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>102</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hell Hath No Fury? Correcting Bias in the NRC Emotion Lexicon
%A Zad, Samira
%A Jimenez, Joshuan
%A Finlayson, Mark
%Y Mostafazadeh Davani, Aida
%Y Kiela, Douwe
%Y Lambert, Mathias
%Y Vidgen, Bertie
%Y Prabhakaran, Vinodkumar
%Y Waseem, Zeerak
%S Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F zad-etal-2021-hell
%X There have been several attempts to create an accurate and thorough emotion lexicon in English, which identifies the emotional content of words. Of the several commonly used resources, the NRC emotion lexicon (Mohammad and Turney, 2013b) has received the most attention due to its availability, size, and its choice of Plutchik’s expressive 8-class emotion model. In this paper we identify a large number of troubling entries in the NRC lexicon, where words that should in most contexts be emotionally neutral, with no affect (e.g., ‘lesbian’, ‘stone’, ‘mountain’), are associated with emotional labels that are inaccurate, nonsensical, pejorative, or, at best, highly contingent and context-dependent (e.g., ‘lesbian’ labeled as Disgust and Sadness, ‘stone’ as Anger, or ‘mountain’ as Anticipation). We describe a procedure for semi-automatically correcting these problems in the NRC, which includes disambiguating POS categories and aligning NRC entries with other emotion lexicons to infer the accuracy of labels. We demonstrate via an experimental benchmark that the quality of the resources is thus improved. We release the revised resource and our code to enable other researchers to reproduce and build upon results.
%R 10.18653/v1/2021.woah-1.11
%U https://aclanthology.org/2021.woah-1.11
%U https://doi.org/10.18653/v1/2021.woah-1.11
%P 102-113
Markdown (Informal)
[Hell Hath No Fury? Correcting Bias in the NRC Emotion Lexicon](https://aclanthology.org/2021.woah-1.11) (Zad et al., WOAH 2021)
ACL