@inproceedings{trujillo-etal-2021-echo,
title = "When the Echo Chamber Shatters: Examining the Use of Community-Specific Language Post-Subreddit Ban",
author = "Trujillo, Milo and
Rosenblatt, Sam and
de Anda J{\'a}uregui, Guillermo and
Moog, Emily and
Samson, Briane Paul V. and
H{\'e}bert-Dufresne, Laurent and
Roth, Allison M.",
editor = "Mostafazadeh Davani, Aida and
Kiela, Douwe and
Lambert, Mathias and
Vidgen, Bertie and
Prabhakaran, Vinodkumar and
Waseem, Zeerak",
booktitle = "Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.woah-1.18/",
doi = "10.18653/v1/2021.woah-1.18",
pages = "164--178",
abstract = "Community-level bans are a common tool against groups that enable online harassment and harmful speech. Unfortunately, the efficacy of community bans has only been partially studied and with mixed results. Here, we provide a flexible unsupervised methodology to identify in-group language and track user activity on Reddit both before and after the ban of a community (subreddit). We use a simple word frequency divergence to identify uncommon words overrepresented in a given community, not as a proxy for harmful speech but as a linguistic signature of the community. We apply our method to 15 banned subreddits, and find that community response is heterogeneous between subreddits and between users of a subreddit. Top users were more likely to become less active overall, while random users often reduced use of in-group language without decreasing activity. Finally, we find some evidence that the effectiveness of bans aligns with the content of a community. Users of dark humor communities were largely unaffected by bans while users of communities organized around white supremacy and fascism were the most affected. Altogether, our results show that bans do not affect all groups or users equally, and pave the way to understanding the effect of bans across communities."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="trujillo-etal-2021-echo">
<titleInfo>
<title>When the Echo Chamber Shatters: Examining the Use of Community-Specific Language Post-Subreddit Ban</title>
</titleInfo>
<name type="personal">
<namePart type="given">Milo</namePart>
<namePart type="family">Trujillo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sam</namePart>
<namePart type="family">Rosenblatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillermo</namePart>
<namePart type="family">de Anda Jáuregui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Moog</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Briane</namePart>
<namePart type="given">Paul</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Samson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Hébert-Dufresne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Allison</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aida</namePart>
<namePart type="family">Mostafazadeh Davani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douwe</namePart>
<namePart type="family">Kiela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Lambert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bertie</namePart>
<namePart type="family">Vidgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinodkumar</namePart>
<namePart type="family">Prabhakaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Community-level bans are a common tool against groups that enable online harassment and harmful speech. Unfortunately, the efficacy of community bans has only been partially studied and with mixed results. Here, we provide a flexible unsupervised methodology to identify in-group language and track user activity on Reddit both before and after the ban of a community (subreddit). We use a simple word frequency divergence to identify uncommon words overrepresented in a given community, not as a proxy for harmful speech but as a linguistic signature of the community. We apply our method to 15 banned subreddits, and find that community response is heterogeneous between subreddits and between users of a subreddit. Top users were more likely to become less active overall, while random users often reduced use of in-group language without decreasing activity. Finally, we find some evidence that the effectiveness of bans aligns with the content of a community. Users of dark humor communities were largely unaffected by bans while users of communities organized around white supremacy and fascism were the most affected. Altogether, our results show that bans do not affect all groups or users equally, and pave the way to understanding the effect of bans across communities.</abstract>
<identifier type="citekey">trujillo-etal-2021-echo</identifier>
<identifier type="doi">10.18653/v1/2021.woah-1.18</identifier>
<location>
<url>https://aclanthology.org/2021.woah-1.18/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>164</start>
<end>178</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When the Echo Chamber Shatters: Examining the Use of Community-Specific Language Post-Subreddit Ban
%A Trujillo, Milo
%A Rosenblatt, Sam
%A de Anda Jáuregui, Guillermo
%A Moog, Emily
%A Samson, Briane Paul V.
%A Hébert-Dufresne, Laurent
%A Roth, Allison M.
%Y Mostafazadeh Davani, Aida
%Y Kiela, Douwe
%Y Lambert, Mathias
%Y Vidgen, Bertie
%Y Prabhakaran, Vinodkumar
%Y Waseem, Zeerak
%S Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F trujillo-etal-2021-echo
%X Community-level bans are a common tool against groups that enable online harassment and harmful speech. Unfortunately, the efficacy of community bans has only been partially studied and with mixed results. Here, we provide a flexible unsupervised methodology to identify in-group language and track user activity on Reddit both before and after the ban of a community (subreddit). We use a simple word frequency divergence to identify uncommon words overrepresented in a given community, not as a proxy for harmful speech but as a linguistic signature of the community. We apply our method to 15 banned subreddits, and find that community response is heterogeneous between subreddits and between users of a subreddit. Top users were more likely to become less active overall, while random users often reduced use of in-group language without decreasing activity. Finally, we find some evidence that the effectiveness of bans aligns with the content of a community. Users of dark humor communities were largely unaffected by bans while users of communities organized around white supremacy and fascism were the most affected. Altogether, our results show that bans do not affect all groups or users equally, and pave the way to understanding the effect of bans across communities.
%R 10.18653/v1/2021.woah-1.18
%U https://aclanthology.org/2021.woah-1.18/
%U https://doi.org/10.18653/v1/2021.woah-1.18
%P 164-178
Markdown (Informal)
[When the Echo Chamber Shatters: Examining the Use of Community-Specific Language Post-Subreddit Ban](https://aclanthology.org/2021.woah-1.18/) (Trujillo et al., WOAH 2021)
ACL