@inproceedings{xu-chen-2022-language,
title = "Who did what to Whom? Language models and humans respond diversely to features affecting argument hierarchy construction",
author = "Xu, Xiaonan and
Chen, Haoshuo",
editor = "He, Yulan and
Ji, Heng and
Li, Sujian and
Liu, Yang and
Chang, Chua-Hui",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-main.21",
pages = "254--265",
abstract = "Pre-trained transformer-based language models have achieved state-of-the-art performance in many areas of NLP. It is still an open question whether the models are capable of integrating syntax and semantics in language processing like humans. This paper investigates if models and humans construct argument hierarchy similarly with the effects from telicity, agency, and individuation, using the Chinese structure {``}NP1+BA/BEI+NP2+VP{''}. We present both humans and six transformer-based models with prepared sentences and analyze their preference between BA (view NP1 as an agent) and BEI (NP2 as an agent). It is found that the models and humans respond to (non-)agentive features in telic context and atelic feature very similarly. However, the models show insufficient sensitivity to both pragmatic function in expressing undesirable events and different individuation degrees represented by human common nouns vs. proper names. By contrast, humans rely heavily on these cues to establish the thematic relation between two arguments NP1 and NP2. Furthermore, the models tend to interpret the subject as an agent, which is not the case for humans who align agents independently of subject position in Mandarin Chinese.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-chen-2022-language">
<titleInfo>
<title>Who did what to Whom? Language models and humans respond diversely to features affecting argument hierarchy construction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaonan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoshuo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chua-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online only</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained transformer-based language models have achieved state-of-the-art performance in many areas of NLP. It is still an open question whether the models are capable of integrating syntax and semantics in language processing like humans. This paper investigates if models and humans construct argument hierarchy similarly with the effects from telicity, agency, and individuation, using the Chinese structure “NP1+BA/BEI+NP2+VP”. We present both humans and six transformer-based models with prepared sentences and analyze their preference between BA (view NP1 as an agent) and BEI (NP2 as an agent). It is found that the models and humans respond to (non-)agentive features in telic context and atelic feature very similarly. However, the models show insufficient sensitivity to both pragmatic function in expressing undesirable events and different individuation degrees represented by human common nouns vs. proper names. By contrast, humans rely heavily on these cues to establish the thematic relation between two arguments NP1 and NP2. Furthermore, the models tend to interpret the subject as an agent, which is not the case for humans who align agents independently of subject position in Mandarin Chinese.</abstract>
<identifier type="citekey">xu-chen-2022-language</identifier>
<location>
<url>https://aclanthology.org/2022.aacl-main.21</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>254</start>
<end>265</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Who did what to Whom? Language models and humans respond diversely to features affecting argument hierarchy construction
%A Xu, Xiaonan
%A Chen, Haoshuo
%Y He, Yulan
%Y Ji, Heng
%Y Li, Sujian
%Y Liu, Yang
%Y Chang, Chua-Hui
%S Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online only
%F xu-chen-2022-language
%X Pre-trained transformer-based language models have achieved state-of-the-art performance in many areas of NLP. It is still an open question whether the models are capable of integrating syntax and semantics in language processing like humans. This paper investigates if models and humans construct argument hierarchy similarly with the effects from telicity, agency, and individuation, using the Chinese structure “NP1+BA/BEI+NP2+VP”. We present both humans and six transformer-based models with prepared sentences and analyze their preference between BA (view NP1 as an agent) and BEI (NP2 as an agent). It is found that the models and humans respond to (non-)agentive features in telic context and atelic feature very similarly. However, the models show insufficient sensitivity to both pragmatic function in expressing undesirable events and different individuation degrees represented by human common nouns vs. proper names. By contrast, humans rely heavily on these cues to establish the thematic relation between two arguments NP1 and NP2. Furthermore, the models tend to interpret the subject as an agent, which is not the case for humans who align agents independently of subject position in Mandarin Chinese.
%U https://aclanthology.org/2022.aacl-main.21
%P 254-265
Markdown (Informal)
[Who did what to Whom? Language models and humans respond diversely to features affecting argument hierarchy construction](https://aclanthology.org/2022.aacl-main.21) (Xu & Chen, AACL-IJCNLP 2022)
ACL