@inproceedings{qasemi-etal-2022-pinks,
title = "{PI}n{KS}: Preconditioned Commonsense Inference with Minimal Supervision",
author = "Qasemi, Ehsan and
Khanna, Piyush and
Ning, Qiang and
Chen, Muhao",
editor = "He, Yulan and
Ji, Heng and
Li, Sujian and
Liu, Yang and
Chang, Chua-Hui",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-main.26",
pages = "320--336",
abstract = "Reasoning with preconditions such as {``}glass can be used for drinking water unless the glass is shattered{''} remains an open problem for language models. The main challenge lies in the scarcity of preconditions data and the model{'}s lack of support for such reasoning. We present PInKS , Preconditioned Commonsense Inference with WeaK Supervision, an improved model for reasoning with preconditions through minimum supervision. We show, empirically and theoretically, that PInKS improves the results on benchmarks focused on reasoning with the preconditions of commonsense knowledge (up to 40{\%} Macro-F1 scores). We further investigate PInKS through PAC-Bayesian informativeness analysis, precision measures, and ablation study.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qasemi-etal-2022-pinks">
<titleInfo>
<title>PInKS: Preconditioned Commonsense Inference with Minimal Supervision</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ehsan</namePart>
<namePart type="family">Qasemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piyush</namePart>
<namePart type="family">Khanna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiang</namePart>
<namePart type="family">Ning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chua-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online only</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Reasoning with preconditions such as “glass can be used for drinking water unless the glass is shattered” remains an open problem for language models. The main challenge lies in the scarcity of preconditions data and the model’s lack of support for such reasoning. We present PInKS , Preconditioned Commonsense Inference with WeaK Supervision, an improved model for reasoning with preconditions through minimum supervision. We show, empirically and theoretically, that PInKS improves the results on benchmarks focused on reasoning with the preconditions of commonsense knowledge (up to 40% Macro-F1 scores). We further investigate PInKS through PAC-Bayesian informativeness analysis, precision measures, and ablation study.</abstract>
<identifier type="citekey">qasemi-etal-2022-pinks</identifier>
<location>
<url>https://aclanthology.org/2022.aacl-main.26</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>320</start>
<end>336</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PInKS: Preconditioned Commonsense Inference with Minimal Supervision
%A Qasemi, Ehsan
%A Khanna, Piyush
%A Ning, Qiang
%A Chen, Muhao
%Y He, Yulan
%Y Ji, Heng
%Y Li, Sujian
%Y Liu, Yang
%Y Chang, Chua-Hui
%S Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online only
%F qasemi-etal-2022-pinks
%X Reasoning with preconditions such as “glass can be used for drinking water unless the glass is shattered” remains an open problem for language models. The main challenge lies in the scarcity of preconditions data and the model’s lack of support for such reasoning. We present PInKS , Preconditioned Commonsense Inference with WeaK Supervision, an improved model for reasoning with preconditions through minimum supervision. We show, empirically and theoretically, that PInKS improves the results on benchmarks focused on reasoning with the preconditions of commonsense knowledge (up to 40% Macro-F1 scores). We further investigate PInKS through PAC-Bayesian informativeness analysis, precision measures, and ablation study.
%U https://aclanthology.org/2022.aacl-main.26
%P 320-336
Markdown (Informal)
[PInKS: Preconditioned Commonsense Inference with Minimal Supervision](https://aclanthology.org/2022.aacl-main.26) (Qasemi et al., AACL-IJCNLP 2022)
ACL
- Ehsan Qasemi, Piyush Khanna, Qiang Ning, and Muhao Chen. 2022. PInKS: Preconditioned Commonsense Inference with Minimal Supervision. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 320–336, Online only. Association for Computational Linguistics.