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Abstract

Automatic language processing is used fre-
quently in the Human Resources (HR) sector
for automated candidate sourcing and evalua-
tion of resumes. These models often use pre-
trained language models where it is difficult to
know if possible biases exist. Recently, Mutual
Information (MI) methods have demonstrated
notable performance in obtaining representa-
tions agnostic to sensitive variables such as
gender or ethnicity. However, accessing these
variables can sometimes be challenging, and
their use is prohibited in some jurisdictions.
These factors can make detecting and mitigat-
ing biases challenging. In this context, we pro-
pose to minimize the MI between a candidate’s
name and a latent representation of their CV
or short biography. This method may mitigate
bias from sensitive variables without requiring
the collection of these variables. We evaluate
this methodology by first projecting the name
representation into a smaller space to prevent
potential MI minimization problems in high
dimensions.

1 Introduction

There are numerous examples of Artificial Intel-
ligence (AI) systems which fail to mitigate bias
contained within datasets used to train models
(Mehrabi et al., 2021; Crawford, 2021; Peña et al.,
2020; Buolamwini and Gebru, 2018; Holstein et al.,
2019). Bias can be introduced via human labelling
or via data extracted from existing human pro-
cesses which replicates societal biases (Barocas
and Selbst, 2016). Left unchecked, machine learn-
ing models will reflect directly the data used to
train them or possibly even exacerbate the effect
of biased data. This is of particular concern in
high-risk domains such as Human Resources (HR),
where models can be used to assess candidates
based on data provided in a Curriculum Vitae (CV)
(Sánchez-Monedero et al., 2020a).

Large pre-trained language models (LLMs) have

been the source of impressive performance gains in
recent times on tasks such as question answering
(Yan et al., 2021), common-sense reasoning (Wei
et al., 2022), computer coding (Xu et al., 2022)
and other domains. However, their capabilities
are characterized poorly, requiring a greater under-
standing of their function to ameliorate potential
harms (Srivastava et al., 2022). Fine-tuning LLMs
on downstream tasks has become the gold standard
for approaching many natural language process-
ing (NLP) tasks (Ruder, 2021). However, the na-
ture of this workflow means that practitioners who
fine-tune such models on downstream tasks have
little visibility of the data used to train the origi-
nal model purely because of the volume of data
involved. This lack of visibility can be problematic
given that these models are trained on huge vol-
umes of text data which may contain hidden biases
(Crawford, 2021).

Mutual Information (MI) is a method for mea-
suring the dependence between two features. It is
the reduction in uncertainty for one random vari-
able caused by knowledge of another. Cover and
Thomas (1991) define it for two random variables
X and Y , having a joint probability mass function
p(x, y) and marginal probability mass functions
p(x) and p(y), as the relative entropy between the
joint distribution and the product distribution:

MI(X;Y ) = Ep(x,y)
[
log

p(X,Y )

p(X)p(Y )

]
(1)

Here, Ep(x,y) is the expected value over the dis-
tribution p. MI is never negative, and values greater
than zero indicate some degree of dependence be-
tween the variables (Kinney and Atwal, 2014). It
has been extensively explored in domains such as
statistics, robotics and bioinformatics (Cheng et al.,
2020) in addition to machine learning (Pichler et al.,
2022; Cheng et al., 2020; Chen et al., 2016; Alemi
et al., 2017; Hjelm et al., 2019; Belghazi et al.,
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2021). In machine learning, it can be used to mea-
sure the amount of sensitive information, such as
gender or ethnicity, contained in a CV in a hir-
ing process. Using MI as a loss function’s regu-
larizer, the dependence between variables can be
minimized (Cheng et al., 2020), thus disentangling
sensitive and non-sensitive information in represen-
tations used to train models. In this work, we will
refer to the process of applying MI to a represen-
tation to minimize the sensitive information held
within it as ‘disentanglement’.

We note that it is sometimes challenging to col-
lect data on such sensitive variables due to privacy
concerns and that it is even illegal in some jurisdic-
tions (Lieberman, 2001). To overcome this prob-
lem, we propose using candidate names as a proxy
for sensitive variables by reducing the MI between
name and CV/BIOS embeddings.

We investigate three approaches to MI estima-
tion which have already seen attention in the lit-
erature within a HR context: Info-NCE (van den
Oord et al., 2019), CLUB (Cheng et al., 2020) and
KNIFE (Pichler et al., 2022). Furthermore, we
present low-dimensional versions of these algo-
rithms, which are of interest given MI difficult to
estimate in high dimensions (Kraskov et al., 2004;
McAllester and Stratos, 2020; Pichler et al., 2020).
We present results on experiments carried out on
two datasets relevant to HR applications: Fair-
CVTest (Peña et al., 2020; Morales et al., 2020),
consisting of synthetic CV data and BIOS (De-
Arteaga et al., 2019), a collection of freely available
online short biographies in English.

Our contributions are as follows:

• We evaluate MI methods for disentangling
sensitive information from unstructured data
(i.e. image or text) in an HR application.

• We successfully remove sensitive informa-
tion without accessing and retraining the pre-
trained backbone models and without requir-
ing the collection of sensitive information, a
critical point given that collecting such infor-
mation is prohibited in some jurisdictions.

• Our proposed methodology simultaneously
removes multiple biases (in the examples de-
tailed, gender and ethnicity information).

• We show experimentally that this disentangle-
ment leads to fairer models.

2 Related Work

This work motivates an investigation of MI estima-
tors by highlighting the requirement for fairness
procedures within AI-augmented systems for HR
applications, such as hiring processes. We build
on the MI estimators proposed by van den Oord
et al. (2019) Info Noise Contrastive Estimation (In-
foNCE), Cheng et al. (2020) Contrastive Log-ratio
Upper Bound (CLUB) and Pichler et al. (2022)
Kernelized-Neural Differential Entropy Estimation
(KNIFE). To our knowledge, our work is the first
wholly focused on the HR domain to investigate
the potential use of MI in hiring processes. We
note that Kamimura (2019) utilizes an HR dataset
in his work, but it cannot be said to be focused en-
tirely on the HR domain as his subject is validating
a simplified method for calculating MI, which he
demonstrates on HR, crab species and wholesale
datasets.

2.1 Fairness via Privacy

HR processes are known to be sub-optimal as they
are not free from bias introduced by practitioners
(Sánchez-Monedero et al., 2020b). There is sub-
stantial literature on gender bias in the domain;
for example, (Bertrand and Duflo, 2016; Bertrand
and Mullainathan, 2003; Ginther and Kahn, 2004;
Sarsons, 2017a,b). AI systems have the potential
to address such problems, ensuring they do not
themselves introduce or amplify bias must be prior-
itized (Köchling and Wehner, 2020; Giang, 2018;
Wachter-Boettcher, 2017).

Bias mitigation in the HR domain has recently
seen attention in the literature. Two main directions
are being taken, namely “fairness through aware-
ness” (Dwork et al., 2012; Kusner et al., 2017)
and “fairness through unawareness” (Kusner et al.,
2017; Grgic-Hlacˇa et al., 2016). In “fairness
through awareness,” researchers seek to make mod-
els more equitable by considering the sensitive vari-
able. However, this approach may sometimes be
inapplicable when affirmative action is prohibited
by law (e.g., in France, the United Kingdom or
Germany) (Lieberman, 2001). In “fairness through
unawareness,” researchers try to remove all infor-
mation related to sensitive variables from the mod-
els. These approaches are closely related to privacy
protection methods where network designers try to
protect their system from attackers trying to extract
personal information from latent representations,
for example, through adversarial training (Jaiswal
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and Mower Provost, 2020a; Hemamou et al., 2021;
Morales et al., 2020).

Lately, new methods using MI have emerged
and have shown very good performance in disen-
tangling representations (van den Oord et al., 2019;
Cheng et al., 2020; Belghazi et al., 2021; Pichler
et al., 2022). By minimizing the MI between the
candidate name embedding and the latent represen-
tation of automatic models, we propose to evaluate
these methods in the context of HR to obtain fairer
models.

2.2 InfoNCE

In the approach outlined in (van den Oord et al.,
2019), the authors utilize an encoder and autore-
gressive model to jointly optimize a loss based on
Noise-Contrastive Estimation (NCE), which they
term InfoNCE, to estimate a lower-bound for MI.
Positive pairs, two representations from the same
instance, are contrasted with negative pairs that
contain a representation drawn from two different
instances (which is, therefore, incorrect). We refer
to the original work (van den Oord et al., 2019)
for full technical details. One drawback of this
method is that if there is some factor in a negative
pair which has a positive association with the pre-
diction task, this can mask the negative association
we hope to capture in the negative pair. Addition-
ally, this method may prove intractable if there is
an extreme dimension mismatch between the two
representations.

2.3 CLUB

Cheng et al. (2020) present an upper-bound MI
estimator based on the difference of conditional
probabilities between positive and negative sample
pairs leveraging contrastive learning. Consider two
random variables X and Y between which we want
to measure the MI. The authors attempt to find a
function that maps the mean and standard deviation
for each dimension of Y for X . If these variables
are related, the error will be much smaller than the
estimated error observed in negative samples. How-
ever, the possibility of multiple dimensions in Y
that are irrelevant to X is potentially problematic,
as is the assumption of gaussian distributions for
mean and standard deviation values.

2.4 KNIFE

Pichler et al. (2022) estimates differential entropy
and conditional differential entropy to compute MI.

Empirically, they show that KNIFE can adapt to dis-
tributions substantially different from the gaussian
kernel shape contrary to the CLUB estimator. They
validate this on text and image data. While report-
ing encouraging results, however, the architecture
takes a long time to train, is complex and requires
large data volumes to ensure it performs well. Sim-
ilarly to CLUB, the potential high dimensionality
of Y can be problematic and obscure the signal of
the dimension of interest for MI estimation.

3 Methodology

Our method aims to minimize the MI between a
latent representation of an individual’s input (either
BIOS or CV embedding) and a word embedding
of their name. Our method comprises two steps.
Firstly, we project the name embedding into a rich
low-dimensional space to solve the curse of dimen-
sionality problem for the MI estimators. Secondly,
we minimize the MI between the representation
of an individual’s input and the latter disentangled
representation. This method allows us to find pos-
sible sensitive, latent variables influencing the two
views of the data (e.g. candidate gender influences
the name of the candidate and the embedding of
their CV) and to simultaneously mitigate the biases
coming from these sensitive variables. We empha-
size that this sensitive information is not used in
the classifier but only in the disentanglement pro-
cedure. Therefore, it is unnecessary to collect the
sensitive variables after deploying the classifier.

To generate name representations, we follow the
approach of Romanov et al. (2019) who use Fast-
Text (Bojanowski et al., 2017) embeddings for this
purpose. We note that this does not address the
issue of Out of Vocabulary (OOV) names - a criti-
cal point in any real-world implementation of this
method which would require robust testing for edge
cases using different embedding schemas. We fo-
cus on comparing the different MI estimators; thus,
we leave experimentation with name representa-
tions to subsequent experiments.

3.1 Formulation

We define xi to be a data point of an individual (e.g.
resume embedding or biography embedding), yi to
be its corresponding label (e.g. resume score or a
job occupation), ti to be the name embedding of the
individual and si a private label (ethnicity, gender)
used only for the disentanglement procedure. In
our experiments, we decompose the primary task
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into two components, namely an encoder fϕ and a
regression or classification head fc:

zi = fϕ(xi)

ŷi = fc(zi)

Here, zi is a meaningful latent representation of
xi relative to the regression/classification task and
ŷi is the predicted score or probability label for xi.
Our method aims to minimize MI between zi and
ti while maximizing performance on predicting ŷi.

3.2 Dimension reduction of target space via
maximization of MI

The estimation and minimization of MI are chal-
lenging problems, especially between two high-
dimensional continuous feature spaces. To address
these issues, we propose to refine the continuous
target space of the name embedding ti by reducing
it to a lower dimensional space. Thus, we pro-
pose to maximize a lower bound of MI via Noise
Contrastive Estimation (NCE) based on a modified
version of InfoNCE:

INCE := E

[
1

N

N∑
i=1

log
esim(x̃i,t̃i))

1
N

∑N
j=1 e

sim(x̃i,t̃j)

]
(2)

with
x̃i = fψ(xi)

t̃i = gψ(ti)

Here, fψ and gψ are two neural networks pro-
jecting in a lower dimensional continuous feature
space, and sim calculates cosine similarity be-
tween two vectors. Finally, the expectation is over
N samples {(xi, ti)}Ni=1 drawn from the joint dis-
tribution p(x, t). We expect to learn a useful en-
coder gψ projecting ti into a rich lower dimension
by maximising this lower bound.

3.3 Disentanglement via Minimization of MI
Once we obtain the rich low-dimensional represen-
tation t̃i, we freeze the encoder gψ and we optimize
the following loss:

Ltotal = Ltask(yi, ŷi) + λ · MI(zi, t̃i) (3)

In this case, MI refers to the value of MI com-
puted by one of the MI estimators (InfoNCE,
CLUB or KNIFE), and λ is a scaling factor to
parameterize the degree of influence of MI for an
experiment.

4 Evaluation

4.1 Datasets

We assess the formulation proposed in Section 3
using two datasets: FairCVtest (Peña et al., 2020;
Morales et al., 2020) and the BIOS dataset (De-
Arteaga et al., 2019). These datasets are available
publicly under standard licenses, and their usage in
this work is consistent with their intended usage in
a research context. Below, we offer basic descrip-
tions and identify only where our approach differs
from the original authors. We refer to the original
papers for other implementation details.

4.1.1 FairCVtest

The FairCVtest dataset1 consists of 24,000 syn-
thetic CVs which contain both structured data in
tabular format which present data about job profi-
ciency and unstructured data such as face images
and text (short biographies and experience profiles,
for example). Gender and racially biased scores are
applied consciously to each candidate (Peña et al.,
2020). For this work, we use the same data splits as
the authors and randomly select 10% of the training
split as a validation set. We generate a name for
each entry based on the gender and ethnicity spec-
ified using the same method used by (Romanov
et al., 2019). FastText (Bojanowski et al., 2017)
embeddings are used to represent candidate names
in our algorithms (resp ti).

4.1.2 BIOS

The BIOS dataset2 consists of approximately
400,000 short biographies of individuals from
twenty-eight different occupations where the clas-
sification task is to predict the individuals’ occupa-
tion from the biography. Due to the dataset size,
the authors provide code to generate the raw data.
However, as the version of common-crawl used to
generate the dataset is a more recent version than
that used by the authors of the original paper (De-
Arteaga et al., 2019) our understanding is that we
cannot assert that the dataset used here is the same
as theirs, though we expect that it is very similar.
Extraction of each individual’s name is possible be-
cause of the biography selection method used. We
have augmented this dataset by inferring the indi-
vidual’s ethnicity using a dedicated neural network
called RaceBERT (Parasurama, 2021). FastText

1https://github.com/BiDAlab/FairCVtest
2https://github.com/Microsoft/biosbias
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embeddings represent the names, and the ethnic-
ity variable is cast as binary (White/Non-White) to
address the class imbalance. The biography embed-
ding is generated from the last hidden state CLS
token from a pre-trained distilROBERTa model.

4.2 Evaluation Metrics

We evaluate our experiences along three dimen-
sions. The first dimension is performance: we ask
whether our methods degrade performance on util-
ity tasks. The second dimension is the private task:
we evaluate the amount of information left to re-
trieve sensitive variables from the model. The last
dimension consists of a fairness metric: we evalu-
ate the possible bias in the trained models’ scores
between the different groups.

4.2.1 Performance Metrics
To evaluate the main task for the FairCVtest dataset,
we use mean absolute error (MAE) as the label is
a candidate score. In the case of the BIOS dataset,
we use the balanced True Positive Rate (TPR) due
to the uneven class distribution of the occupation
target labels. Balanced TPR is the average of TPR
for each job position.

4.2.2 Privacy Metrics
We train two diagnostic classifiers, XGBoost and
Logistic Regression, to recover the sensitive vari-
ables of gender and ethnicity from the latent repre-
sentation of the network. We use the Area Under
the Curve (AUC-ROC) of these classifiers as only
one of the categories (the ethnicity category for
the BIOS dataset) is somewhat imbalanced (see
Figure 10). Also, we care equally about the perfor-
mance for all categories, which mitigates against
use of the Precision-Recall AUC (AUC-PR), which
is generally the appropriate metric for imbalanced
classes (Saito and Rehmsmeier, 2015). We report
the AUC-PR scores for both classes of the BIOS
ethnicity category in Table 12 and Figure 4. If the
performance of these models is good, it means the
representation still contains sensitive information.
This is a method widely used in the fairness and pri-
vacy literature (Jaiswal and Mower Provost, 2020b;
Xie et al., 2017; Hemamou et al., 2021).

4.2.3 Fairness Metrics
We leverage two metrics to monitor fairness. In the
case of the FairCVtest dataset, we report Kullback
Leibler (KL) Divergence, a similarity measure for
probability distributions. For the BIOS dataset, we

follow the approach of Romanov et al. (2019), who
compute a TPR ethnicity and gender gap defined
as the differences in the TPRs between ethnicities
and genders for each occupation. They define the
gender TPR gap for an occupation c as:

Gapg,c = TPRg,c − TPR∼g,c (4)

Here, g and ∼g are binary genders, replaced with
binary ethnicity values for the ethnicity metric. We
also implement the same Root Mean Square (RMS)
TPR gap metric as used by (Romanov et al., 2019),
as it allows us to report a single score to quantify
bias to provide ease of comparison. We square the
gap values as we wish to mitigate more significant
biases. This metric is formulated as follows in the
case of gender:

GapRMS
g =

√
1

|C|
∑
c∈C

Gap2g,c (5)

We report the maximum TPR gap to facilitate
worst-case analyses as per Romanov et al. (2019).

5 Experiments

We first examine the dimension reduction of target
space to understand its utility. We then present the
main results of our evaluation before discussing
limitations and future works.

5.1 Low Dimensional Word Embeddings of
Names as Proxies

In order to visualize and understand the useful-
ness of our proposed dimensionality reduction, we
present in Figure 1 a 2-D UMAP3 projection of
the original space of the name embedding {ti}Ni=1

and the compressed space of the name embedding
{t̃i}Ni=1.

Regarding gender (star vs circle in Figure 1),
the separation is unclear in the original space pro-
jection for both datasets. In the projection of the
compressed space, the separation is more apparent
for both datasets.

Regarding ethnicity (i.e. color in Figure 1), the
separation between groups is unclear in the orig-
inal space projection for the FairCVTest dataset
and even worse on the BIOS dataset. In the pro-
jection of the compressed space, the separation is
better for both datasets. However, this separation is
less pronounced on the BIOS dataset, possibly due
to the non-synthetic nature of this dataset, which

3https://umap-learn.readthedocs.io/en/latest/
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(a) Original Space of the Name Embedding - FairCVTest (b) Compressed Space of the Name Embedding - Fair-
CVTest

(c) Original Space of the Name Embedding - BIOS (d) Compressed Space of the Name Embedding - BIOS

Figure 1: UMAP projections of proxy space on the FairCVTest and BIOS dataset. Color refers to ethnicity (red, blue and green
are white, Asian and African American). The ethnicity class is reduced to binary "White" (in red) and "Non-White" (in blue)
categories for the BIOS dataset. The symbol refers to gender, a circle for males and a star for females.

could indicate that the data reflects other dimen-
sions such as socio-economic class, religion or age.
The presence of multiple potential dimensions of
bias in non-synthetic data is a factor that is ripe for
further investigation. Finally, there is no clear sep-
aration between the African American (i.e. green)
and Asian (i.e. blue) groups in the original and
compressed space for the FairCVTest dataset.

This result shows that names encode sensitive
variables such as ethnicity or gender. In addition,
this demonstrates that it is possible through MI
methods to obtain a lower dimensional representa-
tion better suited as a proxy for sensitive variables.

5.2 FairCVTest

Setup. The main task of this dataset is automatic
CV scoring. From the original CV score, two bi-
ased labels are designed where additive biases de-
pending on the sensitive classes are added. Without
loss of generality, we treat this problem as a multi-
task problem where we try to predict these two
labels simultaneously.
Results. Figure 2 gathers results on the Fair-
CVTest dataset. The red dotted line represents
a vanilla model trained without MI minimization
(case λ = 0). The green dashed line represents
an oracle model trained with the input completely

agnostic of gender and ethnicity. Note that biased
models naturally perform better in the main tasks,
as the label is biased towards sensitive categories.
Thus, the oracle provides us with the information
on the maximum performance on the main tasks
without using any sensitive information. On gender
and ethnicity, we can observe that InfoNCE-LD
and Knife-LD perform better than the other MI
estimators reaching nearly perfect privacy for the
gender task while preserving performance on the
primary task close to that of the oracle. However,
a limit (AUC ≈ 0.7) seems to appear for ethnic-
ity, which is in agreement with the observations
of the section 5.1 regarding a lack of separation
between the "Black" and "Asian" groups. Concern-
ing the fairness metrics, the MI estimators’ use of
the low dimensional target space seems to perform
better, especially for low lambda values (e.g. 0.1
or 1). With lambda greater than or equal to 10,
KNIFE-LD and InfoNCE-LD reach near-perfect
fair predictions with a KL divergence nearly equal
to 0, showing the capability of MI minimization to
reduce the potential bias of the classifier. Finally,
we can note that the CLUB estimator does not im-
prove with respect to the use of small dimensions
for the target space.
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Figure 2: FairCVTest - Results on the MI training on the
Resume Scoring Task, Private Task and Fairness Metrics de-
pending on the lambda value and the MI estimator. The ap-
pendage of -LD indicates the application of the MI estimator
and minimization on the compressed representation of the
name embedding.

5.3 BIOS

Setup. This primary task here is to classify job
positions based on the candidates’ short biography.
As in previous work, due to the strong class im-
balance problem, we use a weighted cross-entropy
loss as Ltask with weights set to the values proposed
by (Cui et al., 2019).
Results. Figure 3 presents results on the BIOS
dataset. First of all, we can see that the represen-
tation of a LLM (Baseline Vanilla Model) indeed
contains sensitive information and implies biases
during training.

Concerning the main task, we can see that perfor-
mance deteriorates for larger lambda values. Thus,
for lambda = 5, a significant decrease is observed
for the InfoNCE-LD estimator. For lambda = 10,
this performance degradation is visible for all esti-
mators except InfoNCE.

Figure 3: BIOS - Results of the MI training on the BIOS
Job Classification Task, Private Task and Fairness Metrics
depending on the lambda value and the MI estimator. The
appendage of -LD indicates the application of the MI estimator
and minimization on the compressed representation of the
name embedding.

Considering the private tasks, we can see that
a larger lambda reduces the capability of an ad-
versarial classifier to retrieve sensitive attributes,
particularly for the estimators CLUB, InfoNCE,
InfoNCE-LD and KNIFE-LD.

Examining the Fairness Metrics, we can see that
our method reduces the RMS error and the maxi-
mum TPR gender gap. Thus, when lambda is equal
to 1 or 2, the RMS TPR Gap goes from 0.15 to 0.1,
and the maximum TPR Gap goes from 0.50 to 0.3
for four estimators, namely: InfoNCE, InfoNCE-
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LD, CLUB and KNIFE-LD. This improvement is
not visible regarding the maximum and RMS TPR
ethnicity gap, possibly because the original model
is not specifically biased towards ethnicity and our
method has no salient effect.

Regarding the beneficial effect of a compressed
name representation, we can see that this is nec-
essary for the KNIFE estimator. Concerning the
CLUB estimator, using such a space seems to de-
grade the performance. The significant difference
between the low dimensional space distribution and
that of a gaussian distribution could explain this
poorer result. Finally, contrary to the experiment
on the FairCVTest dataset, no significant difference
is visible for the InfoNCE estimator.

6 Conclusion and Discussion

In this paper, we propose the use of MI minimiza-
tion in the context of HR to obtain fairer automatic
models. In contrast to previous work that explic-
itly uses variables to be removed, we use a can-
didate name representation as a proxy. We show
experimentally on two datasets that MI methods
help obtain better-anonymized representations and
fairer models while conserving task performance.
Moreover, we show that the dimension reduction
of candidate name word embeddings allows us to
overcome some problems related to estimating MI
in high dimensions. Overall, this work is the first
to evaluate the use of MI in such an application
context by considering the real-world limitations
of sensitive data collection. Finally, we hope this
work will attract research interest in this challeng-
ing and vital task.

6.1 Limitations

While the MI methods explored in this work are
successful in mitigating biases, they are not suc-
cessful in removing sensitive elements of represen-
tations entirely. Also, to simplify our analysis, we
have been reductive in our treatment of some cate-
gories: simplifying the BIOS ethnicity category to
white and non-white categories, for example. We
justify this by pointing out we use this binary cate-
gorisation in the evaluation step only and that this
approach follows established methods (Romanov
et al., 2019). Neither have we controlled for fac-
tors such as religion, socio-economic status, age,
or others, though we would note that an advantage
of our method is that it uses MI minimization be-
tween two continuous representations. By doing so,

we overcome the problem of categorizing or dis-
cretizing the name representation. Investigations of
bias mitigation on categories such as religion, age
and others, are suitable topics for future research
requiring the annotation of datasets with these at-
tributes to investigate if the results reported here
are replicated for other categories.

The methods explored here vary in complexity,
and their computational intensity is another non-
trivial factor. Implementation requires an under-
standing of the influence of hyperparameters and
an ability to enter into a computationally intensive
grid search which may be infeasible for compa-
nies without dedicated machine learning resources.
Also, we note that these methods rely on recog-
nizing the existence of certain biases. They are
not a protection against bias that is unknown or
unacknowledged.

6.2 Risks
We have outlined a series of experiments that ad-
dress bias mitigation in a laboratory setting. Real-
world implementation must build on these methods
and address some of the simplifications introduced
to facilitate ease of analysis. While we have demon-
strated some success in bias mitigation in the fore-
going, we cannot presume these methods can re-
move all bias. We have used name embeddings as
proxies for sensitive information, but names may
not be a foolproof method to reflect social attributes.
People can change their names or manifest different
characteristics from others with similar names. We,
therefore, argue that the results presented here are
promising but not a complete solution to a problem
area that requires further investigation.

To counter this, while we achieve partial success,
in this case, we would also caution against the risk
of refusing to implement these methods because
they are only a partial solution. Solely human-
based hiring processes are biased (Mehrabi et al.,
2021). The application of these methods can reduce
these biases.
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A Appendix

This Appendix provides additional experiment de-
tails, such as model parameters, results tables, ad-
ditional plots and dataset details. The batch size
used for all experiments was 128. The results re-
ported are the average across three random seeds.
NVIDIA Tesla K80 GPUs were used to carry out
the training on a cloud computing platform, which
provided the run metrics reported in Table 7. In
total, 1,627.5 GPU hours were expended running
these experiments.

A.1 Model Parameters for FairCVtest Dataset

Encoder Model fϕ - FairCVtest
Layer Type Input Length Output Length

Fully Connected 32 20
Activation Hyperbolic Tangent

Fully Connected 16 20
Activation Hyperbolic Tangent

Table 1: Dimensions and details for the encoder model in the
FairCVtest dataset experiments.

Regression Head Model fc - FairCVtest
Layer Type Input Length Output Length

Fully Connected 20 1
Activation Sigmoid

Table 2: Dimensions and details for the regression head in the
FairCVtest dataset experiments.

Name Embedding Encoder gΨ - FairCVtest
Layer Type Input Length Output Length

Fully Connected 100 16
Activation Hyperbolic Tangent

Fully Connected 16 16
Activation Hyperbolic Tangent

Fully Connected 16 16
Activation Hyperbolic Tangent

Table 3: Dimensions and details for the name embedding
encoder in the FairCVtest dataset experiments.

A.2 Model Parameters for BIOS Dataset
The input embedding for the BIOS encoding model
is generated from the last hidden state CLS token
of a pre-trained distilROBERTa model.

Encoder Model fϕ - BIOS
Layer Type Input Length Output Length

Fully Connected 768 50
Activation Hyperbolic Tangent

Fully Connected 50 50
Activation Hyperbolic Tangent

Table 4: Dimensions and details for the encoder model in the
BIOS dataset experiments.

Label Model fc - BIOS
Layer Type Input Length Output Length

Fully Connected 50 28
Table 5: Dimensions and details for the label model in the
BIOS dataset experiments.

Name Embedding Encoder gΨ - BIOS
Layer Type Input Length Output Length

Fully Connected 100 12
Activation Hyperbolic Tangent

Fully Connected 12 12
Activation Hyperbolic Tangent

Fully Connected 12 12
Activation Hyperbolic Tangent

Table 6: Dimensions and details for the name embedding
encoder in the BIOS dataset experiments.
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A.3 Supplemental Figure for the BIOS
Ethnicity Category - AUC-PR

Figure 4: The ethnicity category for the BIOS dataset is imbal-
anced in a ratio of 3:1 for white versus non-white categories.
For this reason, we generate the AUC-PR scores for this cate-
gory as it is the appropriate metric for imbalanced data. We
observe the same pattern here as with the AUC-ROC scores
presented in Figure 3: the model becomes less accurate at
predicting ethnicity as values of lambda increase, indicating
the MI process is successful at removing ethnicity information
from the representation.

A.4 GPU Training Hours per Mutual
Information Estimator

Estimator FairCVtest BIOS Total
KNIFE 390 300 690
CLUB 75 90 165
InfoNCE 75 90 165
KNIFE-LD 97.5 127.5 225
CLUB-LD 90 105 195
InfoNCE-LD 82.5 105 187.5
Total 810 817.5 1627.5

Table 7: GPU hours expended per MI estimator.

A.5 Dataset Characteristics

Dataset Split Sizes
Dataset Train Validation Test
FairCVtest 17,280 4,800 1,920
BIOS 247,010 38,571 94,435

Table 8: Details of splits used for each dataset.

FairCVtest
Label Train Validation Test

Ethnicity
White 5765 1598 637
Asian 5695 1640 665
African-American 5820 1562 618

Gender
Male 8636 2400 964
Female 8644 2400 956
Total 17280 4800 1920

Table 9: Details of data splits used for the FairCVTest dataset
including class sizes for the gender and ethnicity categories.

BIOS
Label Train Validation Test

Ethnicity
White 183,048 28,660 70,035
Non-White 63,962 9,911 24,400

Gender
Male 113,414 17,731 43,559
Female 133,596 20,840 50,876
Total 247,010 38,571 94,435

Table 10: Details of data splits used for the BIOS dataset
including class sizes for the gender and ethnicity categories.

A.6 Tables of Results
See following pages.
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A.7 Parameters for the Mutual Information Estimator

Mutual Information Estimator
Parameter FairCVtest BIOS
Low Dimensional Space 16 12
λ [0.1, 1, 10, 100, 1000] [0.1, 1, 2, 5, 10]
MI Learning Rate 0.01
Context Learning Rate 0.01
MI Layers 3
Warm Up Epochs 15
Main Training Epochs 15
Validation Epochs 4
Optimizer Adam

Table 13: Here we present the parameters used for MI estimation detailed per dataset. A single value indicates that this
parameter remained unchanged between datasets. The estimators compared were InfoNCE, CLUB, and KNIFE, along with
low-dimensional versions. Baseline comparisons with λ = 0 were made to demonstrate the effect of removing MI entirely.


