@inproceedings{kumar-etal-2022-detecting,
title = "Detecting Incongruent News Articles Using Multi-head Attention Dual Summarization",
author = "Kumar, Sujit and
Kumar, Gaurav and
Ranbir Singh, Sanasam",
editor = "He, Yulan and
Ji, Heng and
Li, Sujian and
Liu, Yang and
Chang, Chua-Hui",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-main.70",
pages = "967--977",
abstract = "With the increasing use of influencing incongruent news headlines for spreading fake news, detecting incongruent news articles has become an important research challenge. Most of the earlier studies on incongruity detection focus on estimating the similarity between the headline and the encoding of the body or its summary. However, most of these methods fail to handle incongruent news articles created with embedded noise. Motivated by the above issue, this paper proposes a Multi-head Attention Dual Summary (MADS) based method which generates two types of summaries that capture the congruent and incongruent parts in the body separately. From various experimental setups over three publicly available datasets, it is evident that the proposed model outperforms the state-of-the-art baseline counterparts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2022-detecting">
<titleInfo>
<title>Detecting Incongruent News Articles Using Multi-head Attention Dual Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sujit</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaurav</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanasam</namePart>
<namePart type="family">Ranbir Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chua-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online only</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the increasing use of influencing incongruent news headlines for spreading fake news, detecting incongruent news articles has become an important research challenge. Most of the earlier studies on incongruity detection focus on estimating the similarity between the headline and the encoding of the body or its summary. However, most of these methods fail to handle incongruent news articles created with embedded noise. Motivated by the above issue, this paper proposes a Multi-head Attention Dual Summary (MADS) based method which generates two types of summaries that capture the congruent and incongruent parts in the body separately. From various experimental setups over three publicly available datasets, it is evident that the proposed model outperforms the state-of-the-art baseline counterparts.</abstract>
<identifier type="citekey">kumar-etal-2022-detecting</identifier>
<location>
<url>https://aclanthology.org/2022.aacl-main.70</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>967</start>
<end>977</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Incongruent News Articles Using Multi-head Attention Dual Summarization
%A Kumar, Sujit
%A Kumar, Gaurav
%A Ranbir Singh, Sanasam
%Y He, Yulan
%Y Ji, Heng
%Y Li, Sujian
%Y Liu, Yang
%Y Chang, Chua-Hui
%S Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online only
%F kumar-etal-2022-detecting
%X With the increasing use of influencing incongruent news headlines for spreading fake news, detecting incongruent news articles has become an important research challenge. Most of the earlier studies on incongruity detection focus on estimating the similarity between the headline and the encoding of the body or its summary. However, most of these methods fail to handle incongruent news articles created with embedded noise. Motivated by the above issue, this paper proposes a Multi-head Attention Dual Summary (MADS) based method which generates two types of summaries that capture the congruent and incongruent parts in the body separately. From various experimental setups over three publicly available datasets, it is evident that the proposed model outperforms the state-of-the-art baseline counterparts.
%U https://aclanthology.org/2022.aacl-main.70
%P 967-977
Markdown (Informal)
[Detecting Incongruent News Articles Using Multi-head Attention Dual Summarization](https://aclanthology.org/2022.aacl-main.70) (Kumar et al., AACL-IJCNLP 2022)
ACL
- Sujit Kumar, Gaurav Kumar, and Sanasam Ranbir Singh. 2022. Detecting Incongruent News Articles Using Multi-head Attention Dual Summarization. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 967–977, Online only. Association for Computational Linguistics.