@inproceedings{suzuki-etal-2022-emotional,
title = "Emotional Intensity Estimation based on Writer`s Personality",
author = "Suzuki, Haruya and
Tarumoto, Sora and
Kajiwara, Tomoyuki and
Ninomiya, Takashi and
Nakashima, Yuta and
Nagahara, Hajime",
editor = "Hanqi, Yan and
Zonghan, Yang and
Ruder, Sebastian and
Xiaojun, Wan",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop",
month = nov,
year = "2022",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-srw.1/",
doi = "10.18653/v1/2022.aacl-srw.1",
pages = "1--7",
abstract = "We propose a method for personalized emotional intensity estimation based on a writer`s personality test for Japanese SNS posts. Existing emotion analysis models are difficult to accurately estimate the writer`s subjective emotions behind the text. We personalize the emotion analysis using not only the text but also the writer`s personality information. Experimental results show that personality information improves the performance of emotional intensity estimation. Furthermore, a hybrid model combining the existing personalized method with ours achieved state-of-the-art performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suzuki-etal-2022-emotional">
<titleInfo>
<title>Emotional Intensity Estimation based on Writer‘s Personality</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haruya</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sora</namePart>
<namePart type="family">Tarumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoyuki</namePart>
<namePart type="family">Kajiwara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takashi</namePart>
<namePart type="family">Ninomiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuta</namePart>
<namePart type="family">Nakashima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hajime</namePart>
<namePart type="family">Nagahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Hanqi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zonghan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wan</namePart>
<namePart type="family">Xiaojun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a method for personalized emotional intensity estimation based on a writer‘s personality test for Japanese SNS posts. Existing emotion analysis models are difficult to accurately estimate the writer‘s subjective emotions behind the text. We personalize the emotion analysis using not only the text but also the writer‘s personality information. Experimental results show that personality information improves the performance of emotional intensity estimation. Furthermore, a hybrid model combining the existing personalized method with ours achieved state-of-the-art performance.</abstract>
<identifier type="citekey">suzuki-etal-2022-emotional</identifier>
<identifier type="doi">10.18653/v1/2022.aacl-srw.1</identifier>
<location>
<url>https://aclanthology.org/2022.aacl-srw.1/</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Emotional Intensity Estimation based on Writer‘s Personality
%A Suzuki, Haruya
%A Tarumoto, Sora
%A Kajiwara, Tomoyuki
%A Ninomiya, Takashi
%A Nakashima, Yuta
%A Nagahara, Hajime
%Y Hanqi, Yan
%Y Zonghan, Yang
%Y Ruder, Sebastian
%Y Xiaojun, Wan
%S Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online
%F suzuki-etal-2022-emotional
%X We propose a method for personalized emotional intensity estimation based on a writer‘s personality test for Japanese SNS posts. Existing emotion analysis models are difficult to accurately estimate the writer‘s subjective emotions behind the text. We personalize the emotion analysis using not only the text but also the writer‘s personality information. Experimental results show that personality information improves the performance of emotional intensity estimation. Furthermore, a hybrid model combining the existing personalized method with ours achieved state-of-the-art performance.
%R 10.18653/v1/2022.aacl-srw.1
%U https://aclanthology.org/2022.aacl-srw.1/
%U https://doi.org/10.18653/v1/2022.aacl-srw.1
%P 1-7
Markdown (Informal)
[Emotional Intensity Estimation based on Writer’s Personality](https://aclanthology.org/2022.aacl-srw.1/) (Suzuki et al., AACL-IJCNLP 2022)
ACL
- Haruya Suzuki, Sora Tarumoto, Tomoyuki Kajiwara, Takashi Ninomiya, Yuta Nakashima, and Hajime Nagahara. 2022. Emotional Intensity Estimation based on Writer’s Personality. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop, pages 1–7, Online. Association for Computational Linguistics.