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Abstract

The multi-modal foundation model CLIP com-
putes representations from texts and images
that achieved unprecedented performance on
tasks such as zero-shot image classification.
However, CLIP was pretrained on public inter-
net data. Thus it lacks highly domain-specific
knowledge. We investigate the adaptation of
CLIP-based models to the chest radiography
domain using the MIMIC-CXR dataset. We
show that the features of the pretrained CLIP
models do not transfer to this domain. We adapt
CLIP to the chest radiography domain using
contrastive language supervision and show that
this approach yields a model that outperforms
supervised learning on labels on the MIMIC-
CXR dataset while also generalizing to the
CheXpert and RSNA Pneumonia datasets. Fur-
thermore, we do a detailed ablation study of
the batch and dataset size. Finally, we show
that language supervision allows for better ex-
plainability by using the multi-modal model to
generate images from texts such that experts
can inspect what the model has learned.

1 Introduction

Multi-modal models that understand text and im-
ages, as well as the relations between them, surged
in performance due to the pioneering work of CLIP
(Radford et al., 2021). Through a contrastive loss
based on language supervision, the model embeds
matching text-image pairs closely in latent space.
This enables various applications, such as image
classification (Radford et al., 2021), object detec-
tion (Alex Shonenkov, 2021), semantic segmen-
tation, (Zhou et al., 2021; Rao et al., 2021), and
text-to-image generation (Crowson et al., 2022).

As the CLIP models were trained on data scraped
from the internet, they work remarkably well for
data of the general domain and excel at tasks such
as food (Bossard et al., 2014), car brand (Krause
et al., 2013), or animal classification (Parkhi et al.,

2012). However, for more specialized tasks such as
satellite image (Helber et al., 2019, 2018) and can-
cer cell classification (Veeling et al., 2018), they do
not perform much better than a random guess (Rad-
ford et al., 2021). To make these models work for
these tasks, they require adaptation to the specific
domain.

In this paper, we study the adaptation of CLIP
models to the domain of chest x-ray images of
the MIMIC-CXR (Johnson et al., 2019b; Gold-
berger et al., 2000; Johnson et al., 2019a,c) dataset.
We show that the CLIP model pretrained on data
scraped from the internet (Radford et al., 2021)
does not transfer well to MIMIC-CXR. Further-
more, two approaches to adapting the model are
compared: contrastive language supervision (CLS)
and supervised fine-tuning (FT) on labels. We show
that CLS combined with linear probing performs
better than only using FT on labels. Furthermore,
we show that the same language-supervised model
can be used to achieve good performance with only
a linear probe on other chest radiograph datasets
without retraining.

Our first ablation study investigates the batch
size, as the massive batch size of 32,768 used for
the original CLIP training would impose an obsta-
cle for any CLS fine-tuning. We show that a small
batch size is sufficient to achieve good CLS perfor-
mance. We also find that a batch size that is too
large hurts performance, contrary to the findings
of prior work (Chen et al., 2020; Grill et al., 2020;
Radford et al., 2021).

Next to the large batch size, CLIP also used a
large dataset of over 400 million image-text pairs.
In a second ablation study, we investigate whether
CLS needs a large dataset size to outperform super-
vised learning. We show that CLS can be superior
to FT even with only 20,000 image-text pairs (10%
of the MIMIC-CXR dataset).

In the last experiment, we display how to get
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more interpretable neural network classifiers. The
language-supervised model can compare the sim-
ilarity of the features of a text and an image.
Through the gradient of the similarity towards the
image, an image can be generated purely from a
text. This generation allows clinicians and ma-
chine learning scientists to visualize model repre-
sentations. This approach, inspired by CLIP-based
text-to-image approaches such as VQGAN-CLIP
(Crowson et al., 2022) resembles the work of Deep-
Dream (Mordvintsev et al., 2015). Instead of visu-
alizing classes or neuron activations, it visualizes
texts.

2 Related Work

In a closely related work named ConVirt, (Zhang
et al., 2020) train a model using CLS on the image-
text pairs of the MIMIC-CXR dataset and compare
it to supervised learning on the labels. Their pio-
neering work partially inspired the creation of CLIP
(Radford et al., 2021). Our work is complementary
to their work by using the widely adapted archi-
tecture and simplified loss function of CLIP, eval-
uating the performance of the OpenAI-pretrained
CLIP model on MIMIC-CXR, running ablation
studies on the batch size and dataset size, and in-
troducing the text-to-image visualization of diag-
noses.

In CLIP-art (Conde and Turgutlu, 2021), CLIP
was fine-tuned using CLS on a large dataset of mu-
seum artworks with descriptions. The features of
the fine-tuned CLIP model do not lead to a signif-
icantly better classification performance than the
features of the base CLIP model. More related to
the approach of this paper is PubMedCLIP (Es-
lami et al., 2021). The authors fine-tune CLIP
using the CLS objective on image-text pairs from
medical papers. They show that the pretrained
CLIP features improve visual question-answering
performance over the current state-of-the-art base-
line. The continued pretraining using CLS only
slightly improves the performance over the base
CLIP model.

A current preprint follows a similar approach
as our paper. (Seibold et al., 2022) compare the
zero-shot performance of a model trained using
CLS-like loss functions to the performance of su-
pervision on labels. Their work confirms the ben-
efits of training using language supervision over
labels. However, their work focuses on selecting
training data and loss functions. In contrast, our

work analyzes batch sizes, dataset sizes, and an
explainability approach.

3 Background

This work investigates the effect of pretraining us-
ing CLS on text-image pairs before FT on labels.
We are given a set of images S, corresponding texts
T , and labels Y . For both the CLS and FT stages,
a network (in this case, a Transformer (Vaswani
et al., 2017) network from Radford et al., 2021)
first transforms its input into an encoding, lead-
ing to the encodings etext and eimage. In the CLS
stage these encodings are improved by training the
weights of both transformers using a contrastive
loss, whereas the FT stage only uses the vision
transformer and its encoding, followed by a linear
layer. An overview of the two stages is given in
Figure 1.

For FT, a prediction ŷni of the target label
n ∈ Y for image si ∈ S is made by a network
f : f(si) = yni. The binary cross entropy loss
LBCE is calculated per label yn and then averaged
over all N labels to get the supervised loss LSL, as
was done in previous work in multi-label settings
(Liu et al., 2021; Nam et al., 2014).

The BCE loss LBCE of label n is calculated
using the ground truth yni and the prediction yni
for sample i. It assigns a loss that is high initially
and drops off logarithmically as the prediction ap-
proaches the ground truth:

LBCEn(yni, ŷni) =

−1(yni log(ŷni) + (1− yni) log(1− ŷni))
(1)

The pretraining stage of CLS utilizes text and
image representations etext and eimage computed by
the text and image encoders of CLIP, respectively.
During the later FT stage, the linear probe is trained
based on the image encoding eimage, and the full
fine-tuning also tunes the weights of the image en-
coder. During pretraining, a batch of size K image-
text pairs is sampled and encoded. The loss is
calculated by using every encoding of both modal-
ities once as the anchor sample xi. The matching
positive sample x+i is the paired encoded sample
of the other modality and all other encodings from
the other modality of the sampled batch are the
negative samples X−. For each anchor sample, the
InfoNCE loss (Oord et al., 2018) is calculated with
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Figure 1: Loss calculation flowcharts for the different training stages. The Contrastive Language Supervision (CLS)
stage is always followed by the Supervised Fine-tuning Stage (FT) to adapt the model to predict the labels. The FT
stage either trains only a new linear layer head (linear probe via a logistic regression) or it also trains the weights of
the vision transformer. Red rectangles are networks with trainable weights, green shadings indicate encodings, and
yellow arrows indicate the gradient flow.

a similarity function sim(x, y):

LInfoNCE(xi, x
+
i , X

−) =

− log
exp(sim(xi, x

+
i ))∑K

j=0 exp(sim(xi, x
−
j ))

(2)

The total InfoNCE loss is the average of all individ-
ual losses of the samples from the batch. We use
the cosine similarity as a similarity function, as in
the original CLIP paper.

4 Methods

The code for training and evaluating is available on-
line 1. All models were evaluated using the macro
average of the area under the receiver-operator
curve (ROC-AUC or AUC) (Bradley, 1997) aver-
aged over all labels of the dataset. This metric was

1https://github.com/NotNANtoN/master_
thesis

used to enable a comparison with prior work. For
a clinical evaluation, the sensitivity and specificity
should be studied in more detail.

4.1 MIMIC-CXR dataset
The MIMIC-CXR dataset contains 227,827 studies
of chest radiographs with a written report by expert
radiologists. There are one or multiple radiography
images present for each study, leading to 377,095
total image-text pairs. The labels were extracted
by the automatic labeler from the CheXpert dataset
(Irvin et al., 2019). For each report, 14 diagnoses
can appear individually and in conjunction. The
official validation and test splits were used. No
images were excluded. Examples for images and
extracts of reports can be seen in Figure 2.

We marked all labels which are either not con-
tained in a report or contained with an uncertainty
quantifier as negative. All others were marked as
positive. The report text was cleaned for language

https://github.com/NotNANtoN/master_thesis
https://github.com/NotNANtoN/master_thesis
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Figure 2: Text-to-image generations for a subset of four
diagnoses: atelectasis, cardiomegaly, consolidation, and
edema. The first row shows the generated images. The
second row shows real radiography images of MIMIC-
CXR with the sentence of the report relevant to the
labeling of the diagnosis.

supervision by filtering repetitive headers, censored
personal information, newlines, and other unneces-
sary characters. The images were resized such that
the smaller side has a length of 256 pixels.

4.2 External Test Datasets

The RSNA Pneumonia (Wang et al., 2017; Shih
et al., 2019) and cheXpert (Irvin et al., 2019)
datasets were used to evaluate if the model pre-
trained on MIMIC-CXR generalizes to data from
other hospitals with other labels. Linear probes
were trained on the features of the pretrained mod-
els to predict the labels of the external datasets. The
cheXpert dataset contains 223,648 images labeled
with the same diagnoses as MIMIC-CXR. The of-
ficial validation split was used as our test set. The
RSNA dataset contains 30,227 images of which
9,555 are annotated with the pneumonia diagnosis,
forming a single-class, single-label classification
task. A random subset of 10% of the data was used
as a test set, the rest was used for training.

4.3 Model training

In preliminary FT experiments, the CLIP models
RN50, RN50x4, ViT-B/32, ViT-B/16, and ViT-L/14
were investigated. The ViT-B/32 model was chosen
as it is the fastest model and as the performances of
all models were nearly equal. The aim of this paper
is not the best performance but rather a comparison
of the training procedure.

The training setup follows the setup of the orig-
inal CLIP paper (Radford et al., 2021), using

Adam (Kingma and Ba, 2015) with a weight decay
(Loshchilov and Hutter, 2019) of 0.2, β1 value of
0.9, and β2 value of 0.98 for training all models. A
learning rate schedule with a linear warmup from
zero to the maximum learning rate was used during
the first 5% of training and a cosine decay schedule
for the rest of the training. During training, the im-
ages were augmented by rotating them randomly
by up to 45 degrees, shifting them randomly in the
x and y-axis by up to 15% of the image length, and
zooming into and out of the image by up to 10% of
the image size.

All model runs used the pretrained weights from
Radford et al., 2021. The FT models were trained
for 10 epochs with a batch size of 256. The learn-
ing rates {1e−6, 3e−5, 1e−5, 3e−5, 1e−4} were
evaluated, of which 1e−5 performed best on the
validation set. The CLS model was trained for 10
epochs with a batch size of 196. The sentences
of each report text were randomly shuffled during
training to avoid always truncating the final part of
the report if it is longer than 75 tokens (tokenized
with the pretrained CLIP tokenizer). The learning
rate for the CLS stage was tuned with the same set
of learning rates as above. The best learning rate
for a linear probe on the validation set was again
1e−5. After the CLS stage, the model was contin-
ued to be trained on the labels with either a linear
probe using logistic regression or with the FT setup
from above.

4.4 Ablation Studies

The first ablation study varied the batch size while
keeping other parameters constant. It measures the
impact of the number of negative samples in CLS,
which is dependent on the batch size. We varied the
batch size from 6 to 1,536. The maximum batch
size for a single GPU with 12 GB of VRAM is 192.
Training runs with batch sizes below 192 accumu-
late the gradients for as many steps to match the
number of update steps done with a batch size of
192. To accommodate the reduction in update steps
due to the increased batch size, we tested scaling
the learning rate linearly proportional to the batch
size and compared it to keeping the learning rate
constant.

The second ablation study varied the dataset size
to a minimum of 1% to understand whether CLS is
performant on smaller datasets. We trained once for
10 and 50 epochs for each dataset size. Training for
more epochs increases the training duration. There-
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fore it balances the effect of having fewer batches
in an epoch for smaller dataset sizes. The learning
rate and other hyperparameters stayed unchanged.

4.5 Text-to-Image Generation

In the text-to-image generation approach, a
language-supervised model was used after only
3 epochs of training to avoid any overfitting. To
generate an image from a text, first, the text of a
diagnosis is encoded into a text feature vector. The
image is randomly initialized as a single-channel
tensor of size 224x224, randomly sampled from a
normal distribution with a mean of 0.5 and a stan-
dard deviation of 0.25. The gradient of the cosine
similarity between the image’s features and the
diagnosis’s features towards the image is applied
repeatedly to the image to iteratively increase the
similarity to the text. Optimization was done with
Adam (Kingma and Ba, 2015) with a learning rate
of 0.03 and a weight decay (Loshchilov and Hutter,
2019) of 0.1.

Directly optimizing the pixels without any regu-
larization creates adversarial examples (Crowson
et al., 2022). The generated image is augmented
before encoding it with CLIP to avoid this . We use
the augmentation pipeline proposed by (Crowson
et al., 2022).

Multiple images of different resolutions over-
laying each other are optimized simultaneously to
increase image quality. Images of pixel sizes [224,
112, 61, 30, 15] are randomly initialized and op-
timised. During the iterative generation process,
the images are resized to 224x224 pixels and then
averaged. The images of smaller resolutions learn
general shapes, and the higher resolution ones fo-
cus on the details. The average of all resized images
forms the generated image. The augmentations are
applied to this image. The loss to be optimized is
the cosine similarity between the features of this
image and the features of the target text.

5 Results

5.1 Language Supervision Compared to
Supervised Learning

The results of the comparison between FT and CLS
are shown in Table 1. The CLIP ViT-B/32 model
performs worst when using randomly initialized
weights with a linear probe. The improvement
when using pretrained weights is only marginal,
showing that the features of the general CLIP
model do not transfer to the chest radiographs of

Table 1: Table comparing the results of CLS and SL, set
into context with prior work. CLS stands for contrastive
language supervision, FT for supervised fine-tuning, ZS
for zero-shot, and LP for linear probe. Rand. indicates
that the weights of the network were randomly initial-
ized - in all other cases the pretrained weights from
Radford et al., 2021 are used. AUC stands for the macro
ROC-AUC, averaged over all labels and multiplied by
100 for legibility. Ours stands for the CLIP ViT-B/32
model.

(a) MIMIC-CXR (Johnson et al., 2019c)

Model Type AUC
Nunes et al., 2019 FT 65.6
Seibold et al., 2022 ZS 79.4
Ours Rand. + LP 66.5
Ours LP 66.7
Ours FT 77.2
Ours CLS + LP 77.8
Ours CLS + FT 77.3

(b) CheXpert (Irvin et al., 2019)

Model Type AUC
Seibold et al., 2022 ZS 78.9
Zhang et al., 2020 CLS + LP 87.3
Zhang et al., 2020 CLS + FT 88.1
Azizi et al., 2021 FT 77.0
Ours CLS + LP 87.2

(c) RSNA (Wang et al., 2017; Shih et al., 2019)

Model Type AUC
Zhang et al., 2020 CLS + LP 92.1
Zhang et al., 2020 CLS + LP 92.7
Han et al., 2021 FT 92.3
Ours CLS + LP 90.7

MIMIC-CXR. Training the model using FT in-
creases the AUC significantly from 0.66 to 0.77.
CLS beats this score by a slight margin. CLS with
only a linear probe is competitive with and slightly
superior to pure FT.

The comparison with the results of prior work
shows that similar performance has been reached
for all datasets. For both external datasets, CLS
with a linear probe reaches competitive perfor-
mance, which displays the generality of the learned
features.

5.2 Batch Size Ablation

The results of the batch size ablation experiment
can be seen in Figure 3. For smaller batch sizes, the
performance drops but stays above 0.75. Notably,
the best batch size is 576. The AUC drops for larger
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Figure 3: The batch size plotted against the test ROC
AUC score. The batch size is varied to investigate
whether a larger pool of negative samples is necessary
for CLS. The optimal batch size peaks at 576. Scale
LR indicates whether the learning rate is scaled linearly
with the batch size for batch sizes beyond 196.

batch sizes independent of the learning rate scaling
method. This drop demonstrates an upper limit of
the optimal batch size for our model and dataset.

5.3 Dataset Size Ablation

The results of the dataset size ablation study in Fig-
ure 4 show that the main results hold at varying
dataset sizes. Pretraining using CLS on the whole
dataset, followed by fine-tuning on a fraction of
the labels consistently performs best. CLS with a
linear probe outperforms FT for all dataset sizes
greater or equal than 10% (around 20,000 image-
text pairs) when trained for 50 epochs. With only
10% of the dataset, CLS nearly matches the per-
formance of applying it to the full dataset. The
difference between the performance of the 10 and
50 epoch runs is large for the CLS runs that use
at least 10% of the dataset size and small lower
dataset sizes. This discrepancy could indicate that
a critical dataset size of around 10% of the total
dataset size exists that CLS requires to learn good
representations.

5.4 Explainability via Text-to-image
Generation

The interpretability results are shown in the top row
of Figure 2. Qualitatively, one can observe that the
generated images display a lung and a heart. They
also greatly differ depending on which text they
are conditioned on. We consulted two radiologists
from a local clinic who both were able to assign
2 out of 4 diagnoses correctly to the generated
images. These qualitative analyses open the door
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Figure 4: The dataset size plotted against the test ROC
AUC score for FT and CLS. FT stands for supervised
fine-tuning, CLS for contrastive language supervision.
CLS + FT is the two-stage approach of first applying
CLS to text-image pairs, followed by full fine-tuning
via labels. CLS + LP is CLS followed by a linear probe.
The CLS on Full Data + FT approach uses all data for
CLS and a reduced dataset size for FT.

for further empirical studies.

6 Conclusion

We show that CLS with a simple linear probe out-
performs FT on the MIMIC-CXR dataset, even
when using small batch sizes on a single GPU.
Models trained using CLS generalize to datasets
of the same domain. CLS outperforms FT for all
dataset sizes down to 20,000 image-text pairs.

The optimal batch size in our experiments was
576. Furthermore, CLS stopped being performant
when using fewer than 20,000 training pairs. Future
work could investigate how the optimum batch size
changes depending on the dataset size and if this
critical dataset size is replicable for other datasets.
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