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Abstract

M-SENA is an open-sourced platform for Mul-
timodal Sentiment Analysis. It aims to fa-
cilitate advanced research by providing flex-
ible toolkits, reliable benchmarks, and intu-
itive demonstrations. The platform features
a fully modular video sentiment analysis frame-
work consisting of data management, feature
extraction, model training, and result analy-
sis modules. In this paper, we first illustrate
the overall architecture of the M-SENA plat-
form and then introduce features of the core
modules. Reliable baseline results of differ-
ent modality features and MSA benchmarks
are also reported. Moreover, we use model
evaluation and analysis tools provided by M-
SENA to present intermediate representation
visualization, on-the-fly instance test, and gen-
eralization ability test results. The source code
of the platform is publicly available at https:
//github.com/thuiar/M-SENA.

1 Introduction

Multimodal Sentiment Analysis (MSA) aims to
judge the speaker’s sentiment from video segments
(Mihalcea, 2012; Soleymani et al., 2017; Guo et al.,
2019). It has attracted increasing attention due
to the booming of user-generated online content.
Although impressive improvements have been wit-
nessed in recent MSA researches (Tsai et al., 2019;
Rahman et al., 2020; Yu et al., 2021), building
an end-to-end video sentiment analysis system for
real-world scenarios is still full of challenges.

The first challenge lies in effective acoustic
and visual feature extraction. Most previous ap-
proaches (Zadeh et al., 2017a; Hazarika et al., 2020;
Han et al., 2021a) are developed on the provided
modality sequences from CMU-MultimodalSDK1.
However, reproducing exact identical acoustic and
visual feature extraction is almost impossible due

∗ These authors contributed equally to this work.
† Hua Xu is the corresponding author.

1Features provided by CMU

to the the vague description of feature selection and
backbone selection (both COVAREP2 and Facet3

can not be directly used in Python). Moreover, re-
cent literature (Tsai et al., 2019; Gkoumas et al.,
2021; Han et al., 2021b) observe that the text
modality stands in the predominant position while
acoustic and visual modalities have few contribu-
tions to the final sentiment classification. Such
results further arouse the attention on effective fea-
ture extraction of acoustic and visual modalities.

With the awareness of the importance of acoustic
and visual feature extraction, researchers attempt to
develop models based on customized modality se-
quences instead of provided features (Dai et al.,
2021; Hazarika et al., 2020). However, perfor-
mance comparison with different modality features
is unfair. Therefore, the demand for reliable com-
parison of modality features and fusion methods is
increasingly urgent.

Another factor that limits the application of ex-
isting MSA models in real scenarios is the lack
of comprehensive model evaluation and analysis
approaches. Models obtained outstanding perfor-
mance on the given test set might degrade in real-
world scenarios due to the distribution discrepancy
or random modality perturbations (Liang et al.,
2019; Zhao et al., 2021; Yuan et al., 2021). Be-
sides, effective model analysis is also crucial for
researchers to explain the improvements and per-
form model refinement.

The Multimodal SENtiment Analysis platform
(M-SENA) is developed to address the above chal-
lenges. For acoustic and visual features, the
platform integrates Librosa (McFee et al., 2015),
OpenSmile (Eyben et al., 2010), OpenFace (Bal-
trusaitis et al., 2018), MediaPipe (Lugaresi et al.,
2019) and provides a highly customized feature
extraction API in Python. With the modular MSA
pipeline, fair comparison between different features

2https://github.com/covarep/covarep
3https://imotions.com
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Figure 1: The overall framework of the M-SENA platform contains four main modules: data management module,
feature extraction module, model training module and model evaluation module.

and MSA fusion models can be achieved. The re-
sults can be regarded as reliable baselines for future
MSA research. Furthermore, the platform provides
comprehensive model evaluation and analysis tools
to reflect the model performance in real-world sce-
narios, including intermediate result visualization,
on-the-fly instance demonstration, and generaliza-
tion ability test. The contributions of this work are
briefly summarized as follows:

1. By providing a highly customized feature ex-
traction toolkit, the platform familiarizes re-
searchers with the composition of modality
features. Also, the platform bridges the gap
between designing MSA models with pro-
vided, fixed modality features and building
a real-world video sentiment analysis system.

2. The unified MSA pipeline guarantees fair
comparison between different combinations
of modality features and fusion models.

3. To help researchers evaluate and analyze MSA
models, the platform provides tools such as
intermediate result visualization, on-the-fly in-
stance demonstration, and generalization abil-
ity test.

2 Platform Architecture

M-SENA platform features convenient data access,
customized feature extraction, unified model train-
ing pipeline, and comprehensive model evaluation.
It provides a graphical web interface as well as
Python packages for researchers with all features
above. The platform currently supports three popu-
lar MSA datasets across two languages, seven fea-
ture extraction backbones, and fourteen benchmark
MSA models. Figure 1 illustrates the overall archi-
tecture of the M-SENA platform. In the remaining
parts of this section, features of each module in
Figure 1 will be described in detail.

2.1 Data Management Module
The data management module is designed to ease
the access of multimedia data on servers. Besides
providing existing benchmark datasets, the module
also enables researchers to build and manage their
own datasets.
Benchmark Datasets. M-SENA currently sup-
ports three benchmark MSA datasets, including
CMU-MOSI (Zadeh et al., 2016), CMU-MOSEI
(Zadeh et al., 2018b) in English, and CH-SIMS
(Yu et al., 2020) in Chinese. Details of integrated
datasets are shown in Appendix A. Users can filter
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Acoustic Feature Sets

ComParE_2016 (Schuller et al., 2016) Static (HSFs)
eGeMAPS (Eyben et al., 2015) Static (LLDs)
wav2vec2.0 (Baevski et al., 2020) Learnable

Visual Feature Sets

Facial Landmarks (Zadeh et al., 2017b) Static
Eyes Gaze (Wood et al., 2015) Static
Action Unit (Baltrušaitis et al., 2015) Static

Textual Feature Sets

GloVe6B (Pennington et al., 2014) Static
BERT (Devlin et al., 2018) Learnable
RoBerta (Liu et al., 2019) Learnable

Table 1: Some of the supported features in M-SENA.

and view raw videos conveniently without down-
loading them to the local environment.
Building Private Datasets. The M-SENA plat-
form also provides a graphical interface for re-
searchers to construct their own datasets using up-
loaded videos. Following the literature (Yu et al.,
2020), M-SENA supports unimodal sentiment la-
belling along with multimodal sentiment labelling.
The constructed datasets can be directly used for
model training and evaluation on the platform.

2.2 Feature Extraction Module
Emotion-bearing modality feature extraction is still
an open challenge for MSA tasks. To facilitate
effective modality feature extraction for MSA, M-
SENA integrates seven most commonly used fea-
ture extraction tools and provides a unified Python
API as well as a graphical interface. Part of the
supported features for each modality are listed in
Table 1 and described below:
Acoustic Modality. Various acoustic features
have been proven effective for emotion recogni-
tion (El Ayadi et al., 2011; Akçay and Oğuz, 2020).
Hand-crafted acoustic features can be divided into
two classes, low level descriptors (LLDs), and
high level statistics functions (HSFs). LLDs fea-
tures, including prosodies, spectral domain features
and others, are calculated on a frame-basis, while
HSFs features are calculated on an entire utter-
ance level. In addition to the hand-crafted features,
M-SENA also provides pretrained acoustic model
wav2vec2.0 (Baevski et al., 2020) as a learnable
feature extractor. Researchers can also design and
build their own customized acoustic features using
the provided Librosa extractor.
Visual Modality. In existing MSA research, facial
Landmarks, eyes gaze, and facial action units are

Types Scenarios
Films(TV) Variety Show Life(Vlog)

Easy 10 (en:4 ch:6) 8 (en:4 ch:4) 8 (en:4 ch:4)
Common 9 (en:4 ch:5) 11 (en:6 ch:5) 8 (en:4 ch:4)
Difficult 9 (en:4 ch:5) 9 (en:5 ch:4) 8 (en:4 ch:4)

Noise 9 (en:4 ch:5) 8 (en:4 ch:4) 7 (en:2 ch:5)
Missing 9 (en:4 ch:5) 9 (en:5 ch:4) 7 (en:3 ch:4)

Table 2: Statistics of the generalization ability test
dataset, where "en" represents "English", "ch" repre-
sents "Chinese".

commonly used visual features. The M-SENA plat-
form enables researchers to extract visual feature
combinations flexibly using OpenFace and Medi-
aPipe extractors.
Text Modality. Compared with acoustic and vi-
sual features, semantic text embeddings are much
more mature with the rapid development of pre-
trained language models (Qiu et al., 2020). Fol-
lowing previous works (Zadeh et al., 2017a; Rah-
man et al., 2020; Lian et al., 2022), M-SENA sup-
ports GloVe6B (Pennington et al., 2014), pretrained
BERT (Devlin et al., 2018), and pretrained RoBerta
(Liu et al., 2019) as textual feature extractors.

All feature extractors above are available
through both Python API and Graphical User Inter-
face(GUI). Listing 1 shows a simple example of de-
fault acoustic feature extraction using Python API.
The process is similar for other modalities. Ad-
vanced usage and detailed documentation is avail-
able at Github Wiki4.
1 from MSA_FET import

FeatureExtractionTool
2

3 # Extract Audio Feature for MOSI.
4 fet = FeatureExtractionTool("librosa")
5

6 feature = fet.run_dataset(
7 dataset_dir=’~/MOSI’,
8 out_file=’output/feature.pkl’
9 )

Listing 1: An example of acoustic feature extraction
on the MOSI dataset using MMSA.

2.3 Model Training Module

M-SENA provides a unified training module which
currently integrates 14 MSA benchmarks, includ-
ing tensor fusion methods, TFN (Zadeh et al.,
2017a), LMF (Liu et al., 2018), modality factor-
ization methods, MFM (Tsai et al., 2018), MISA
(Hazarika et al., 2020), SELF-MM (Yu et al.,
2021), word-level fusion methods, MulT (Tsai
et al., 2019), BERT-MAG (Rahman et al., 2020),

4https://github.com/thuiar/MMSA-FET/wiki
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Feature Combinations TFN GMFN MISA Bert-MAG
Acc-2 (%) F1 (%) Acc-2 (%) F1 (%) Acc-2 (%) F1 (%) Acc-2 (%) F1 (%)

CMU-SDK† 78.02 78.09 76.98 77.06 82.96 82.98 83.41 83.47
[T1]-[A1]-[V1] 77.41 77.47 77.77 77.84 83.78 83.80 83.38 83.43

[T2]-[A1]-[V1] 70.40 70.51 71.40 71.54 75.22 75.68 - -
[T3]-[A1]-[V1] 80.85 80.79 80.21 80.15 79.57 79.67 - -

[T1]-[A2]-[V1] 76.80 76.82 78.02 78.03 83.72 83.72 82.96 83.04
[T1]-[A3]-[V1] 77.19 77.23 78.44 78.45 82.16 82.23 83.57 83.58

[T1]-[A1]-[V2] 77.38 77.48 78.81 78.71 83.2 83.14 82.13 82.20
[T1]-[A1]-[V3] 76.74 76.81 78.23 78.24 84.06 84.08 83.69 83.75

Table 3: Results for feature selection. For text, [T1] refers to BERT, [T2] refers to GloVe6B, [T3] refers to RoBerta.
For acoustic, [A1] refers to eGeMAPS, [A2] refers to customized feature including 20-dim MFCC, 12-dim CQT,
and f0, [A3] refers to wav2vec2.0. For visual, [V1] refers to action units, [V2] refers to landmarks, [V3] refers to
both landmarks and action units. CMU-SDK† refers to modified CMU-SDK features with BERT for text.

multi-view learning methods: MFN (Zadeh et al.,
2018a), GMFN (Zadeh et al., 2018b), and other
MSA methods. Detailed introduction of the inte-
grated baseline methods is provided in Appendix B.
We will continue following advanced MSA bench-
marks and put our best effort into providing reliable
benchmark results for future MSA research.

2.4 Result Analysis Module

The proposed M-SENA platform provides compre-
hensive model evaluation tools including interme-
diate result visualization, on-the-fly instance test,
and generalization ability test. A brief introduction
of each component is given below, while a detailed
demonstration is shown in Section 4.
Intermediate Result Visualization. The discrimi-
nation of multimodal representations is one of the
crucial metrics for the evaluation of different fusion
methods. The M-SENA platform records the final
multimodal fusion results and illustrates them after
decomposition with Principal Component Analysis
(PCA). Training loss, binary accuracy, F1 score
curves are also provided in M-SENA for detailed
analysis.
Live Demo Module. In the hope of bridging the
gap between MSA research and real-world video
sentiment analysis scenarios, M-SENA provides
a live demo module, which performs on-the-fly
instance tests. Researchers can validate the effec-
tiveness and robustness of the selected MSA model
by uploading or live-feeding videos to the platform.
Generalization Ability Test. Compared to the
provided test set of benchmark MSA datasets, real-
world scenarios are often more complicated. Future
MSA models need to be robust against modality
noise as well as effective on the test set. Driven

by the demand from real-world applications and
observations, the M-SENA platform provides a gen-
eralization ability test dataset (consists of 68 Chi-
nese and 61 English samples), simulating as many
complicated and diverse real-world scenarios as
possible. The statistics of the proposed dataset is
shown in Table 2. In general, the dataset contains
three scenarios and five instance types. Specifically,
the three scenarios refers to films, variety shows,
and user-uploaded vlogs, while the five instance
types refer to easy samples, common samples, diffi-
cult samples, samples with modality noise, samples
with modality missing. In addition, the dataset is
balanced in terms of gender and scenario to avoid
irrelevant factors. Examples of the generalization
ability test dataset are shown in Appendix C.

3 Experiments on M-SENA

In this section, we report experiments conducted
on the M-SENA platform. Comparison of different
modality features are shown in Section 3.1, and
comparison of different fusion models are shown
in Section 3.2. All reported results are the mean
performances of five different seeds.

3.1 Feature Selection Comparison

In the following experiments, we take BERT
[T1], eGeMAPS (LLDs) [A1], and Action Unit
[V1] as default modality features, and compare
them with the other six feature sets. Specifi-
cally, we utilize GloVe6B [T2], RoBerta [T3]
for text modality comparison; customized acous-
tic feature[A2](including 20 dimensional MFCC,
12 dimensional CQT, and 1 dimensional f0),
wav2vec2.0 features [A3] for acoustic modality
comparison; facial landmarks [V2], facial land-
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Model MOSI MOSEI SIMS
Acc-2 F1 MAE Corr Acc-2 F1 MAE Corr Acc-2 F1 MAE Corr

LF_DNN 79.39 79.45 0.945 0.675 82.78 82.38 0.558 0.731 76.68 76.48 0.446 0.567
EF_LSTM 77.35 77.43 0.995 0.644 81.23 81.02 0.588 0.695 69.37 56.82 0.591 0.380

TFN 78.02 78.09 0.971 0.652 82.23 81.47 0.573 0.718 77.07 76.94 0.437 0.582
LMF 78.60 78.61 0.934 0.663 83.83 83.68 0.562 0.735 77.42 77.35 0.438 0.578
MFN 78.78 78.71 0.938 0.665 83.30 83.23 0.570 0.720 78.55 78.23 0.442 0.575

GMFN 76.98 77.06 0.986 0.642 83.48 83.23 0.575 0.713 78.77 78.21 0.445 0.578
MFM 78.63 78.63 0.958 0.649 83.49 83.29 0.581 0.721 75.06 75.58 0.477 0.525
MulT 80.21 80.22 0.912 0.695 84.63 84.52 0.559 0.733 78.56 79.66 0.453 0.564
MISA 82.96 82.98 0.761 0.772 84.79 84.73 0.548 0.759 76.54 76.59 0.447 0.563

BERT_MAG 83.41 83.47 0.761 0.776 84.87 84.85 0.539 0.764 74.44 71.75 0.492 0.399
MLF_DNN - - - - - - - - 80.44 80.28 0.396 0.665

MTFN - - - - - - - - 81.09 81.01 0.395 0.666
MLMF - - - - - - - - 79.34 79.07 0.409 0.639

Self_MM 84.30 84.31 0.720 0.793 84.06 84.12 0.531 0.766 80.04 80.44 0.425 0.595

Table 4: Experiment results for MSA benchmark comparison. All models utilize the Bert embedding and the
provided acoustic and visual features in CMU-MultimodalSDK. Due to the requirement of unimodal labels, multi-
task models, including MLF_DNN, MTFN, and MLMF, are tested on SIMS only.

marks and action units [V3] for visual modality
comparison. Besides, we also report the model per-
formances using the modality features provided in
CMU-MultimodalSDK.

Table 3 shows the experiment results for feature
selection. For Bert-MAG which is designed upon
the Bert backbone, experiments are conducted only
for Bert as text feature. It can be observed that, in
most cases, using appropriate features instead of
original features in CMU-MultimodalSDK helps
to improve model performance. For textual modal-
ity, Roberta feature performs best for TFN and
GMFN model, while Bert feature performs best for
MISA model. For acoustic modality, wav2vec2.0
embeddings (without finetune) perform best for
GMFN and Bert-MAG model. According to lit-
erature (Chen and Rudnicky, 2021; Pepino et al.,
2021), finetuning wav2vec2.0 can further improve
model performance which might provide more ef-
fective acoustic features for future MSA research.
For Visual modality, the combination of facial land-
marks and action units achieves the overall best re-
sult, revealing the effectiveness of both landmarks
and action units for sentiment classification.

3.2 MSA Benchmark Comparison

Experiment results of benchmark MSA models
are shown in Table 4. All models are improved
using Bert as text embeddings while using origi-
nal acoustic and visual features provided in CMU-
MultimodalSDK. Besides recording reliable bench-
mark results, the M-SENA platform also provides
researchers with a convenient approach to repro-
duce the benchmarks. Again, both GUI and Python

API are available. We show an example of the
proposed Python API in Listing 2. Detailed and
Advanced usage is included in our documentation
at Github5. We will continuously catch up on new
MSA approaches and update their performances.

1 from MMSA import MMSA_run
2

3 # Load Default Training Config.
4 config = get_config_regression(
5 model_name=’tfn’,
6 dataset_name=’mosi’
7 )
8

9 # Using User Designed Hyper-parameter.
10 config[’post_fusion_dim’] = 32
11

12 # Modality Feature Selection.
13 config[’featurePath’] = ’feature.pkl’
14

15 # Start Model Training.
16 MMSA_run(
17 model_name=’tfn’,
18 dataset_name=’mosi’,
19 config=config,
20 seeds=[1111]
21 )

Listing 2: An example to train model with M-SENA.

4 Model Analysis Demonstration

This section demonstrates model analysis results
using the M-SENA platform. Intermediate result
analysis is presented in Section 4.1, on-the-fly in-
stance analysis is shown in Section 4.2, and gen-
eralization ability analysis is illustrated in Section
4.3.

5https://github.com/thuiar/MMSA/wiki
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Figure 2: Intermediate Result Analysis for TFN model
trained on MOSI dataset.

4.1 Intermediate Result Analysis

The intermediate result analysis submodule is de-
signed to monitor and visualize the training process.
Figure 2 shows an example of training TFN model
on MOSI dataset. Epoch results of binary accuracy,
f1-score and loss value are plotted. Moreover, the
learned multimodal fusion representations are il-
lustrated in an interactive 3D figure with the aim
of helping users gain a better intuition about the
multimodal feature representations and the fusion
process. Unimodal representations of text, acoustic,
and visual are also shown for models containing
explicit unimodal representations.

4.2 On-the-fly Instance Analysis

M-SENA enables researchers to validate the pro-
posed MSA approaches using uploaded or live-
recorded instances. Figure 3 presents an example
of the live demonstration. Besides model predic-
tion results, the platform also provides feature vi-
sualization, including short-time Fourier transform
(STFT) for acoustic modality and facial landmarks,
eye gaze, head poses for visual modality. We will
continuously update the demonstration to make it
a even more intuitive and playable MSA model
evaluation tool.

4.3 Generalization Ability Analysis

We utilized the model trained on MOSI dataset
with [T1]-[A1]-[V3] modality features in Section
3.1 for generalization ability test. Experimental
results are reported in Table 5. It can be concluded
that all models present a performance gap between

Visual Modality: Landmarks, head pose.

Acoustic Modality: STFT.

Text Modality: Transcript.
this is great news, but i am not happy about it.

Model Predictions:

Figure 3: On-the-fly instance test example. The M-
SENA platform also provides real-time modality feature
visualization along with the model prediction results.

Types TFN GMFN MISA Bert-MAG
Acc-2 / F1 Acc-2 / F1 Acc-2 / F1 Acc-2 / F1

Easy 83.3 / 84.4 75.0 / 76.1 75.0 / 76.7 66.7 / 66.7
Common 71.4 / 74.5 85.7 / 82.3 71.4 / 75.8 78.6 / 78.6
Difficult 69.2 / 69.2 61.5 / 60.5 53.9 / 54.4 84.6 / 84.6

Noise 60.0 / 50.5 50.0 / 44.9 50.0 / 35.7 60.0 / 51.7
Missing 63.6 / 60.6 81.8 / 77.8 63.6 / 60.6 63.6 / 61.5

Avg 70.0 / 68.4 71.7 / 69.3 63.3 / 62.4 71.7 / 69.7

Table 5: Results for English generalization ability test.
Binary accuracy and F1 scores are reported to show the
effectiveness and robustness of the model.

original test set and real-world scenarios, especially
for the instances with noisy or missing modalities.
Another observation is that the noisy instances are
usually more challenging than modality missing for
MSA models, revealing that noisy modality feature
is worse than none at all. In the future, for the de-
mand of real-world applications, MSA researchers
may consider analyzing model robustness as well
as performances on the test set, and design a more
robust MSA model against random modality noise.

5 Related Works

To the best of our knowledge, there are two widely
used open-source repositories from CMU team6

and SUTD team7. Both of them provide tools to
load well-known MSA datasets and implement sev-

6https://github.com/A2Zadeh/CMU-MultimodalSDK
7https://github.com/declare-lab/multimodal-deep-

learning
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eral benchmarks methods. So far, their works have
attracted considerable attention and facilitated the
birth of new MSA models such as MulT (Tsai et al.,
2019) and MMIM (Han et al., 2021b).

In this paper, we propose M-SENA, compared
to previous works, the M-SENA platform is novel
from the following aspects. For data management,
previous work directly loads the extracted features,
while the M-SENA platform focuses on intuitive
raw video demonstration, and provides user with
a convenient means for private dataset construc-
tion. For modality features, M-SENA platform first
provides user-customized feature extraction toolkit
and a transparent feature extraction process. Fol-
lowing the tutorial, Users can easily reproduce the
feature extraction steps and develop their research
on designed feature set. For model training, the M-
SENA platform first utilizes a unified MSA frame-
work and provide an easy-to-reproduce model train-
ing API integrating fourteen MSA benchmarks on
three popular MSA dataset. For model evaluation,
the M-SENA is the first MSA platform consist-
ing of comprehensive evaluation means stressing
model robustness for real-world scenarios, which
aims to bridge the gap between MSA research and
applications.

Conclusion

In this work, we introduce M-SENA, an integrated
platform that contains step-by-step recipes for data
management, feature extraction, model training,
and model analysis for MSA researchers. The
platform evaluates MSA model in an end-to-end
manner and reports reliable benchmark results for
future research. Moreover, we further investi-
gate comprehensive model evaluation and analysis
methods and provide a series of user-friendly vi-
sualization and demonstration tools including in-
termediate representation visualization, on-the-fly
instance test, and generalization ability test. In
the future, we will continuously catch up on ad-
vanced MSA research progress and update new
benchmarks on the M-SENA platform.
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A Integrated Datasets

CMU-MOSI. The MOSI (Zadeh et al., 2016)
dataset is a widely-used dataset that consists of
a collection of 2,199 video segments from 93
YouTube movie review videos.
CMU-MOSEI. The MOSEI (Zadeh et al., 2018b)
dataset expands the MOSI dataset by enlarging the
number of utterances and enriching the variety of
samples, speakers, and topics. For both MOSI
and MOSEI datasets, instances are annotated with
a sentiment intensity score ranging from -3 to 3
(strongly negative to strongly positive).
CH-SIMS. The SIMS dataset (Yu et al., 2020)
is a Chinese unimodal and multimodal sentiment
analysis dataset. It contains 2,281 refined video
segments in the wild with both multimodal and
independent unimodal annotations of a sentiment
intensity score ranging from -1 to 1 (negative to
positive, the score interval is 0.2).

B Integrated Benchmarks

LF-DNN. The Late Fusion Deep Neural Network
(Cambria et al., 2017) first extracts modality fea-
tures separately and performs late fusion strategy
for final predictions.
EF-LSTM. The Early Fusion Long-Short Term
Memory (Cambria et al., 2017) is based on input-
level feature fusion and conducts Long-Short Term
Memory (LSTM) to learn multimodal representa-
tions.
TFN. The Tensor Fusion Network (TFN) (Zadeh
et al., 2017a) calculates a multi-dimensional tensor
(based on outer product) to capture uni-, bi-, and
tri-modal interactions.
LMF. The Low-rank Multimodal Fusion (LMF)
(Liu et al., 2018) is an improvement over TFN,
where the low-rank multimodal tensors fusion tech-
nique is performed to improve efficiency.
MFN. The Memory Fusion Network (MFN)
(Zadeh et al., 2018a) accounts for continuously
modeling the view specific and cross-view interac-
tions and summarizing them through time with a
Multi-view Gated Memory.
Graph-MFN. The Graph Memory Fusion Network
(Zadeh et al., 2018b) is an improvement of MFN,
which can change the fusion structure dynamically
to obtain the interaction between the modalities and
improve the interpretability.
MulT. The Multimodal Transformer (MulT) (Tsai
et al., 2019) extends multimodal transformer ar-
chitecture with directional pairwise cross-modal
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attention which translates one modality to another
using directional pairwise cross-attention.

BERT-MAG. The Multimodal Adaptation Gate
for Bert (MAG-BERT) (Rahman et al., 2020) is an
improvement over RAVEN on aligned data with
applying multimodal adaptation gate at different
layers of the BERT backbone.

MISA. The Modality-Invariant and -Specific Rep-
resentations (Hazarika et al., 2020) is made up of
a combination of losses including similarity loss,
orthogonal loss, reconstruction loss and predic-
tion loss to learn modality-invariant and modality-
specific representation.

MFM. The Multimodal Factorization Model (Tsai
et al., 2018) is a robust model, which can learn
multimodal-discriminative and modality-specific
generative factors, then reconstructs missing recon-
struct missing modalities by adjusting for indepen-
dent factors.

MLF_DNN. The Multi-Task Late Fusion Deep
Neural Network (Yu et al., 2020) first extracts
modality features separately and performs late fu-
sion strategy for final predictions through unimodal
labels training.

MTFN. The Multi-Task Tensor Fusion Network
(Yu et al., 2020) calculates a multi-dimensional
tensor (based on outer product) to capture uni-, bi-,
and tri-modal interactions through unimodal labels
training.

MLMF. The Multi-Task Low-rank Multimodal
Fusion (Yu et al., 2020) is an improvement over
MTFN, where low-rank multimodal tensors fu-
sion technique is performed to improve efficiency
through unimodal labels training.

Self_MM. The Self-Supervised Multi-Task Multi-
modal (Yu et al., 2021) design a label generation
module based on the self-supervised learning strat-
egy to acquire independent unimodal supervisions,
which can balance the learning progress among
different sub-tasks.

C Generalization Ability Test Datasets

The examples of the proposed generalization ability
test dataset are shown in Figure 4.

I really think she just wanted love and to be loved and …
Tag: Difficult 、Vlog、English、Female、Negative 

可是对他来说，我就是不够！
Tag: Video Missing、Variety Show、Chinese、Female、Negative 

 - - - Video missing - - - 

And we have to work through that and understand that 
what we‘re doing is something that.

Tag: Video Missing 、Variety Show、English、Male、Neutral 

 - - - Video missing - - - 

那没有，那我觉得还是跟您比较般配！
Tag: Difficult、Vlog、Chinese、Male、Negative

I already lost my family once!
Tag: Environment Noise 、TV、English、Female、Negative 

Environmental noise

站在原地这样的伤亡是最少的，你清楚吗？
Tag: Background music Noise 、TV、Chinese、Male、Negative 

Background music noise

Figure 4: Examples of the constructed generalization
ability test dataset.
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