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Abstract

Since the development and wide use of pre-
trained language models (PLMs), several ap-
proaches have been applied to boost their per-
formance on downstream tasks in specific do-
mains, such as biomedical or scientific domains.
Additional pre-training with in-domain texts
is the most common approach for providing
domain-specific knowledge to PLMs. How-
ever, these pre-training methods require consid-
erable in-domain data and training resources
and a longer training time. Moreover, the train-
ing must be re-performed whenever a new PLM
emerges. In this study, we propose a domain
knowledge transferring (DoKTra) framework
for PLMs without additional in-domain pre-
training. Specifically, we extract the domain
knowledge from an existing in-domain pre-
trained language model and transfer it to other
PLMs by applying knowledge distillation. In
particular, we employ activation boundary dis-
tillation, which focuses on the activation of
hidden neurons. We also apply an entropy reg-
ularization term in both teacher training and
distillation to encourage the model to generate
reliable output probabilities, and thus aid the
distillation. By applying the proposed DoKTra
framework to downstream tasks in the biomedi-
cal, clinical, and financial domains, our student
models can retain a high percentage of teacher
performance and even outperform the teach-
ers in certain tasks. Our code is available at
https://github.com/DMCB-GIST/DoKTra.

1 Introduction

Recently, transformer (Vaswani et al., 2017)-based
language models have been successfully applied in
the field of natural language processing (NLP). In
particular, the two-stage approach of “pre-training
and fine-tuning,” such as BERT (Devlin et al.,
2019), has become the standard for NLP applica-
tions. Generally, a transformer-based model is pre-
trained with a large amount of text data in an unsu-
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pervised manner, and then fine-tuned with a small
dataset for several downstream tasks. Further, ad-
vanced pre-trained language models (PLMs) with
improved architectures or training methods con-
tinue to emerge, including ALBERT (Lan et al.,
2019) or RoBERTa (Liu et al., 2019).

However, these models must be further improved
for tasks requiring domain knowledge, such as
those in the biomedical or financial domains, as
the pre-training data usually consist of general do-
main text (e.g., Wikipedia). Additional pre-training
with in-domain text has been proposed to provide
the PLMs with domain-specific knowledge. For ex-
ample, in the biomedical domain, several domain-
specific PLMs trained with large biomedical texts,
such as BioBERT (Lee et al., 2020), PubMedBERT
(Gu et al., 2020) and BlueBERT (Peng et al., 2019),
have been successfully used as strong baselines
for several downstream tasks. Nevertheless, addi-
tional pre-training has several limitations, such as
the need for sufficient training data and resources,
and a longer training time. Furthermore, whenever
a new PLM emerges, it must be re-trained to create
more advanced domain-specific models.

To address this issue, we propose an efficient
domain-knowledge transferring framework that
does not require additional pre-training steps.
Specifically, we focus on the applicability of knowl-
edge distillation (Hinton et al., 2015) as a domain-
knowledge transfer method, not only for model
compression. Knowledge distillation is a well-
known knowledge transfer method that is primarily
used for model compression. The knowledge from
a larger and more effective teacher model is dis-
tilled to a smaller student model by encouraging it
to mimic the teacher characteristics, such as soft
probabilities (Hinton et al., 2015) or hidden repre-
sentations (Kim et al., 2018; Sun et al., 2019).

In this study, we propose a domain knowledge
transfer (DoKTra) framework for an advanced
PLM via calibrated activation boundary distilla-
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Figure 1: Comparison between (a) an existing domain
transfer method and (b) a proposed framework. The
thickness of the arrow is proportional to the required
training time.

tion. In contrast to the existing in-domain pre-
training methods, we transfer domain knowledge
to a new language model using only an existing
in-domain pre-trained model, and without a time-
consuming pre-training on the new model. For
instance, BioBERT was pre-trained for 23 days
on 8 NVIDIA V100 GPUs (Lee et al., 2020). We
can estimate that if a new, larger language model
is pre-trained with a large number of biomedical
texts, its training duration would be longer than
that of BioBERT. However, our framework can be
executed in a few hours on a single 24 GB GPU.
The comparison between our framework and a con-
ventional approach is visualized in Figure 1.

Specifically, we apply the calibration method to
generate a reliable and well-supervising teacher
model. Then, we apply activation boundary dis-
tillation (Heo et al., 2019) to distill the domain
knowledge to the student, which is more efficient
with a small amount of training data. Moreover,
by selecting language models more advanced than
the teacher as students, we allow the student mod-
els to acquire additional domain knowledge while
preserving its superiority.

We apply our framework to the biomedical do-
main and verify its effectiveness by conducting ex-
periments on several biomedical and clinical down-
stream tasks. Consequent to applying our frame-
work to ALBERT and RoBERTa student models,
we were able to obtain models that retained most

of the teacher model’s performance with fewer
model parameters (ALBERT), and models with
a higher performance than both students and teach-
ers (RoBERTa). We also investigate the general
applicability of our framework by applying it to a
financial domain PLM and downstream tasks. The
contributions of this study can be summarized as
follows:

• We propose a DoKTra framework for ad-
vanced PLM via calibrated activation bound-
ary distillation, without additional time-
consuming pre-training steps.

• We conduct experiments to demonstrate the
efficacy of DoKTra, resulting in obtaining the
student models that retain most of the perfor-
mances of the teacher model while utilizing
fewer parameters or achieve even higher per-
formances than the teacher model.

2 Related Work

2.1 Pre-trained language model (PLM)

Most modern language models are based on the
transformer (Vaswani et al., 2017) architecture.
The PLMs generally use only the encoder block of
the transformer, which consists of two sublayers: a
self-attention layer and a feed-forward layer. BERT
(Devlin et al., 2019) is the most widely used PLM,
which consists of several layers of transformer en-
coders. It was pre-trained for 4 days with a large
amount of text data, which consisted of 3.3 billion
words, using masked language modeling and a next
sentence prediction task in an unsupervised man-
ner. This pre-trained model can be easily used in
various downstream tasks by fine-tuning it with a
labeled dataset. Following the success of BERT, a
variety of similar PLMs have emerged. Lan et al.
(2019) proposed ALBERT, which outperformed
BERT with considerably fewer parameters. AL-
BERT’s architecture is more complex than BERT’s;
however, by applying factorized embedding param-
eterization and cross-layer parameter sharing, the
number of parameters can be reduced. Liu et al.
(2019) observed that BERT is significantly under-
trained, and proposed RoBERTa, a more robust and
better-performing model, which is obtained by a
longer pre-training with a larger dataset (approxi-
mately 10 times that of BERT) and the removal of
next sentence prediction.
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2.2 Domain knowledge transferring for PLMs

Despite the PLMs’ excellent performances in sev-
eral downstream tasks in the general domain, they
have not exhibited a superior performance in spe-
cific domain tasks, such as in biomedicine. To
provide domain-specific knowledge to PLMs, ad-
ditional pre-training with in-domain data has been
applied. BioBERT (Lee et al., 2020) further pre-
trained BERT using biomedical text consisting of
18 billion words, such as literature abstracts. Peng
et al. (2019) applied a similar approach with both
biomedical and clinical text data. Differently, Gu
et al. (2020) pre-trained BERT from scratch with
only biomedical literature.

3 DoKTra framework

In this section, we introduce the DoKTra frame-
work, which is the main approach to transfer
domain-specific knowledge.

3.1 Overview

The main goal of the DoKTra framework is to pro-
duce a task-specific student model for each down-
stream task in a specific domain by distilling do-
main knowledge from a fine-tuned teacher model.
Our framework consists of two main stages: cal-
ibrated teacher training and activation boundary
distillation.

In calibrated teacher training, the teacher model
is trained to distil its domain-specific and task-
specific knowledge into the student model. We use
an existing in-domain PLM as the initial teacher
model. For each downstream task in the initial
teacher’s domain, the teacher model is fine-tuned
with its training data. In this process, an entropy
regularization term, called the confidence penalty
loss (Pereyra et al., 2017), is added to the training
loss. By adding the confidence regularizer, the fine-
tuned teacher model can generate more reliable
output prediction probabilities for the input data,
and thus, have a positive effect on distillation.

In activation boundary distillation, the domain-
specific knowledge of the teacher model is trans-
ferred to the student model. We use an existing
PLM as the initial student model, which is only
pre-trained in the general domain. First, the student
model is fine-tuned for a downstream task. Subse-
quently, it mimics the activation pattern of the hid-
den neurons in the teacher model (Heo et al., 2019).
By distilling the activation pattern, the activation
boundary of the teacher model is transferred more

precisely, and the domain-specific knowledge of
the teacher is transferred to the student model. Ad-
ditionally, the student model is refined over fewer
epochs with a standard classification loss (Romero
et al., 2014; Yim et al., 2017; Heo et al., 2019).
Because the student model is already fine-tuned
for the downstream task, any additional refinement
may result in overconfidence (Guo et al., 2017;
Nixon et al., 2019). To address this issue, we also
add the confidence regularizer to the refinement
step. The proposed framework is visualized in Fig-
ure 2.

3.2 Calibrated teacher training

In this step, a task-specific teacher model is gen-
erated for each in-domain downstream task using
a fine-tuning approach. Specifically, we choose
BioBERT-base (Lee et al., 2020) as the initial
teacher model, which has been pre-trained with a
large biomedical domain corpus, such as PubMed
abstracts. Owing to the in-domain pre-training, the
BioBERT model outperforms the BERT model in
several biomedical downstream tasks.

Despite their high performance, modern deep
neural networks are not well calibrated (Guo et al.,
2017), which is similar to language models such
as BERT. In other words, these models only pre-
dict overconfidently and cannot generate a reliable
output probability for the given input. However,
most distillation approaches encourage the use of
softened probability because they contain more in-
formation and can better support the learning of
the student model (Hinton et al., 2015; Cho and
Hariharan, 2019). Moreover, Menon et al. (2021)
demonstrated that a teacher model that estimates
“good” probabilities can better supervise a student
model. Based on this idea, we apply an entropy-
regularizing term that penalizes overconfidence
when fine-tuning the teacher model (Pereyra et al.,
2017). Several previous studies have revealed that
a confidence penalty improves both the calibration
and performance of biomedical downstream tasks
(Choi and Lee, 2020).

Since an overconfident classification model pro-
duces output probabilities close to 0 and 1, its prob-
ability distribution has a low entropy value. The
confidence penalty loss (CPL) addresses this prob-
lem by minimizing the negative entropy of the out-
put probability. Formally, the output probability of
the model with parameters θ can be written as a
conditional distribution pθ(y|x) through the soft-
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Figure 2: An overview of the DoKTra framework

max function for classes y and a given input x. The
entropy value of the output probability is given by

H(pθ(y|x)) = −
∑
i

pθ(yi|x) log(pθ(yi|x)),

(1)

where i denotes the class index. Finally, negative
entropy is added to a regular cross-entropy loss
LCE ,

Lcls = LCE − βH(pθ(y|x)), (2)

where β refers to a hyperparameter that controls
the strength of entropy penalty.

3.3 Activation Boundary Distillation
Recently, Heo et al. (2019) has proposed a knowl-
edge distillation method that only distils the acti-
vation boundary of the hidden representation of a
deep neural network. Instead of distilling the mag-
nitude of the neurons of the teacher network, Heo
et al. (2019) designed the distillation loss to only
transfer the activation of neurons and thus, allowed
the activation boundary to be transferred. Since the
decision boundary of a model, which consists of a
combination of activation boundaries, is critical for
the classification task, this method outperformed
several distillation methods in image classification.
Moreover, they also reported that the activation
boundary distillation can learn rapidly and more
efficiently with a small amount of training data.
Thus, we select it as the domain-knowledge trans-
ferring method for our framework; this is beacuse
the domain-specific downstream tasks usually con-
sist of lesser training data than general domains.

To apply the activation boundary distilla-
tion to PLMs, we use classification embed-
ding of the teacher and student as the distilla-
tion target. More precisely, the input sequence

of a PLM such as BERT can be written as
[CLS], t1, t2, . . . , [SEP ], where ti is the i-th to-
ken of the example. Then, the final output se-
quence is h([CLS]), h(t1), . . . , h([SEP ]), where
h(t) indicates the hidden output of the last layer
of the token t. For the classification task, the out-
put embedding of the first special token(“[CLS],”
also known as the classification token) is gener-
ally used as the input of the classification layer.
Thus, we apply activation boundary distillation to
the classification embedding (output embedding
of the classification token). For an input example
x, let T[CLS](x) ∈ Rd and S[CLS](x) ∈ Rd be
the classification embedding vector (h([CLS])) of
the teacher and student model, respectively. An
element-wise activation indicator function can be
defined to express the activation of a neuron:

ρ(x) =

{
1, if x > 0

0, otherwise.
(3)

The loss function to transfer the activation of
neurons is a l1 norm of the difference between
activations:

LAT (x) = ∥ρ(T[CLS](x))− ρ(S[CLS](x))∥1.
(4)

However, this loss function cannot be minimized
using gradient descent because ρ is a discrete func-
tion. To address this issue, Heo et al. (2019) has
proposed an alternative loss function similar to
hinge loss (Rosasco et al., 2004) with an activa-
tion function σ.
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LAT (x) = ∥ρ(T[CLS](x))⊙ σ(µ1− (S[CLS](x)))

+(1− ρ(T[CLS](x)))⊙ σ(µ1+ (S[CLS](x)))∥22,
(5)

where ⊙ is the element-wise product and 1 is a d-
dimensional vector, with all values equal to 1. µ is
the margin, which is a hyperparameter for training
stability.

Specifically, we select two PLMs as the initial
student model: ALBERT-xlarge (Lan et al., 2019),
which has a smaller number of parameters but per-
forms better than BERT, and RoBERTa-large (Liu
et al., 2019), which has a larger number of param-
eters and is known to outperform BERT signifi-
cantly for most of the tasks. To distil the knowl-
edge from a teacher model, we first fine-tune the
student model to provide initial knowledge about
the task. Then the student model is trained with
LAT . We also add a few refinement steps to re-
fine the classification layer of the student model.
Because the student model is already fine-tuned
before the distillation step, this additional refine-
ment may cause overconfidence. Thus, we apply a
confidence penalty regularization in the refinement
step. Namely, the student is refined with Lcls af-
ter the distillation steps. We add a hyperparameter
γ ∈ [0, 1], which determines when the training loss
is switched from distillation to refinement. The pro-
cedure of the DoKTra framework is summarized in
Algorithm 1.

Algorithm 1 DoKTra framework
Input: Downstream task data D = {xk, yk}Nk=1,
hyperparameter β1, β2, γ

1: Fine-tune the teacher T with data D, using Lcls

with β1
2: Fine-tune the student S with data D, using LCE

3: epochswitch = epochstotal × γ
4: for each epoch do
5: if epoch < epochswitch then
6: Train S using LAT

7: else
8: Train S using Lcls with β2
9: end if

10: end for
11: return Student model S

Dataset #Train #Dev #Test Metrics Domain
ChemProt 17865 11263 15583 micro F1 Biomed.

GAD 4796 - 534 F1 Biomed.
DDI 18779 7244 5761 micro F1 Biomed.
i2b2 22160 96 43000 micro F1 Clin.
HoC 10527 1496 2896 F1 Biomed.

Table 1: The statistics of the downstream task datasets

4 Experiments

4.1 Datasets

We evaluated our approach on several biomedi-
cal and clinical classification downstream tasks,
including relation extraction and multi-label classi-
fication.

The relation extraction task aims to classify the
relationship between two entities (e.g., gene, chem-
ical, and disease) that are already annotated. The
ChemProt (Krallinger et al., 2017) dataset con-
tains PubMed abstracts with 10 types of chemical-
protein interaction annotations and only five of the
types are used for evaluation. The GAD dataset
(Bravo et al., 2015) consists of gene-disease binary
relation annotations. The DDI (Herrero-Zazo et al.,
2013) dataset consists of text from the DrugBank
database and Medline abstracts, with four types
of drug-drug interaction annotations. In the clini-
cal domain, the i2b2 dataset (Uzuner et al., 2011)
contains texts from clinical documents, and eight
types of relations between medical problems and
treatments have been annotated. The HoC (Baker
et al., 2016) corpus consists of PubMed abstracts
with ten types of hallmarks of cancer annotation.
Note that the HoC dataset is a multi-label docu-
ment classification task predicting the combination
of labels from an input text.

We pre-process every classification dataset ex-
cept for GAD in the same manner as the BLUE
(Peng et al., 2019) benchmark. In particular, entity
anonymization is applied to all relation extraction
datasets, which replace the entity mentions with
anonymous tokens (e.g., @GENE$, @DISEASE$)
to avoid confusion in using complex entity names.
We use a pre-processed version of the GAD dataset
provided by BioBERT, which is split for 10-fold
cross-validation. The statistics of the pre-processed
downstream task datasets are listed in Table 1.
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Models #Params. ChemProt GAD DDI i2b2 HoC Avg. Retain

BioBERT-ft (teacher) 110M 76.20±0.65 81.59±0.27 80.05±0.62 74.14±0.35 84.21±0.33 79.24

ALBERT-ft (student) 60M 73.67±0.98 74.33±0.91 81.31±0.72 69.89±1.17 81.76±0.20 76.19

ALBERT-DoKTra 60M 77.42±0.04 78.86±0.19 82.30±0.41 72.98±0.07 83.52±0.44 79.02 99.72%

RoBERTa-ft (student) 355M 75.75±0.35 77.84±1.80 80.71±1.56 72.51±1.80 83.98±0.44 78.16

RoBERTa-DoKTra 355M 78.04±0.22 81.38±0.05 82.25±0.30 75.65±0.11 85.34±0.12 80.53 101.63%

Table 2: The DoKTra framework’s main experimental results. (ft: fine-tuned)

4.2 Experimental details

For the experiments, we used the pre-trained
BioBERT-base model (L=12, H=768, A=12) as the
initial teacher model. We used two pre-trained mod-
els as the initial student model: ALBERT-xlarge
(L=24, H=2048, A=32) and RoBERTa-large (L=24,
H=1024, A=16). In the previous description, we
have assumed that the embedding dimensions of
teachers and students are identical. However, be-
cause the hidden embedding dimensions of teach-
ers and students are different in our setting, we
applied a linear transformation to the teacher’s clas-
sification embedding to match the dimension with
the student model.

In calibrated teacher training, we trained for 3-10
epochs with a learning rate of 2e-5. The hyperpa-
rameter β1, the strength of the confidence penalty
in teacher training, was chosen from {0, 0.3, 0.5,
0.7}. For activation boundary distillation, we first
fine-tuned the initial student model for 5-10 epochs
with learning rates of {6e-6, 8e-6, 1e-5}. Then, we
distilled for 10 epochs with learning rates of {6e-6,
8e-6, 1e-5}. The confidence penalty strength β2
in the refinement step and loss switch rate γ were
chosen from {0, 0.3, 0.5, 0.7} and {0.6, 0.7 ,0.8,
0.9}, respectively. The margin µ of the activation
transfer loss was set to 1.0. Every hyperparameter
was tuned on the development set. The selected
hyperparameters are shown in the Appendix.

The experiments were run on a single RTX 3090
24 GB GPU, and the training codes were imple-
mented in PyTorch. All experiments were repeated
three times with different random seeds, and the
average performances and standard deviations have
been reported.

4.3 Experimental results on downstream tasks

Table 2 shows the overall experimental F1 score
results of the DoKTra framework on five biomed-
ical and clinical classification tasks. The initially

fine-tuned student models are in the second and
fourth rows and the DoKTra framework is applied
to both, as shown in the third and fifth rows.

As shown in the third and fifth rows, the classi-
fication performances of biomedical and clinical
downstream tasks are significantly improved by ap-
plying our proposed framework, when compared to
the initial student models. This implies that distill-
ing the activation patterns of the neurons from the
calibrated teacher model can transfer its domain-
specific knowledge and thus improve the task per-
formance in the domain on which the student has
not yet been pre-trained.

By applying the DoKTra framework, the
ALBERT-xlarge student model was able to retain
99.72% of the teacher model performance on an
average. ALBERT has two advantages: a small
number of parameters and high performance (Lan
et al., 2019). Applying our framework to ALBERT
allowed us to obtain a student model with per-
formance comparable to that of the teacher with
half the parameters. In other words, we success-
fully transferred domain-specific knowledge to AL-
BERT while maintaining its existing advantages.
Consequently, the distilled ALBERT achieved a
higher performance than the teacher model on
ChemProt and DDI.

The RoBERTa model that was applied to the pro-
posed framework outperformed the teacher model
on an average, specifically in four of five down-
stream tasks (ChemProt, DDI, i2b2, and HoC).
RoBERTa’s performance was already similar to
the teacher model in the initial fine-tuning stage be-
cause it was pre-trained with more data than BERT
and exhibited a greater robustness. The results on
RoBERTa imply that our proposed framework can
be effectively applied to emerging and advanced
pre-trained language models. In other words,
domain-specific knowledge can be transferred into
advanced models without a time-consuming pre-
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Dataset
BioBERT RoBERTa RoBERTa

-ft -PM-ft -DoKTra
ChemProt 76.20 79.00 78.04

GAD 81.59 81.16 81.38
DDI 80.05 81.39 82.25
i2b2 74.14 78.83 75.65
HoC 84.21 86.11 85.34
Avg. 79.24 80.90 80.53

Table 3: Performance comparison between existing pre-
trained model and DoKTra. (bold for the best, underline
for the second best)

training and perturbing the model’s efficacy in the
general domain.

4.4 Performance comparisons

To compare our approach with the in-domain
pre-training method, we used RoBERTa-PM-large
(Lewis et al., 2020), which is a RoBERTa-large
model additionally pre-trained with a large biomed-
ical and clinical corpus consisting of 14 billion
words. We fine-tuned the RoBERTa-PM for each
task.

Table 3 shows the classification performance of
BioBERT, RoBERTa-PM, and our approach in five
biomedical and clinical tasks. As mentioned be-
fore, our best model outperformed the BioBERT
(teacher) model on four of the five tasks. Notably,
our approach even outperformed RoBERTa-PM
on two tasks and demonstrated comparable perfor-
mances on the others. These results are remarkable
since our approach spent only a few hours on each
task, whereas RoBERTa-PM may require several
days and billions of words to be pre-trained. Note
that RoBERTa-PM has an advantage in the i2b2
task since its pre-training data contains MIMIC-III
clinical text data, while our teacher model was pre-
trained with only biomedical texts. In other words,
this implies our approach has a room for further
improvement when a better in-domain model is set
as a teacher.

We also compared our framework with task-
adaptive pre-training (TAPT) (Gururangan et al.,
2020), an additional pre-training method for PLMs.
The TAPT approach additionally pre-trains an ex-
isting PLM before fine-tuning it with the training
samples of each task. As both TAPT and DoK-
Tra only utilize the task-specific training data, they
can be fairly compared in terms of performance

Dataset
RoBERTa

-ft
TAPT

TAPT
(3xGPU)

RoBERTa
-DoKTra

ChemProt 75.75 73.55 75.40 78.04
GAD 80.17 81.85 81.41 84.47
DDI 80.71 73.61 78.00 82.25
i2b2 72.51 70.95 72.42 75.65
HoC 83.98 86.39 86.45 85.34
Avg. 79.34 77.27 78.74 81.15

Table 4: Performance comparison between TAPT and
DoKTra.

and training resources. For TAPT, we additionally
pre-trained the RoBERTa-large model with each
pre-processed downstream task’s training data. We
followed the hyperparameters used in TAPT except
for batch size and the maximum sequence length
because we used the same computing resource as
DoKTra for a fair comparison. The possible maxi-
mum pre-training batch size with the given comput-
ing resource for the RoBERTa-large model was 36.
Since the results of the RoBERTa-large model with
a small batch size were unstable, we also performed
a distributed training with three GPUs, resulting in
a batch size of 108.

The comparison results are shown in Table 4.
Note that the performance on GAD in Table 4 was
evaluated with the first split of a 10-fold cross-
validation, while the main result in Table 3 was
evaluated with all splits. As revealed in the re-
sults, even though TAPT showed improved results
in the original study with Google Cloud TPU, it
was unstable with the small batch size and sequence
length; the performances were even degraded in the
general GPU environment. Although the TAPT per-
formance improved when the batch size increased
through distributed training, the improvement was
inadequate. This may be because of the batch size
being smaller than that in the TPU environment.
Moreover, DoKTra required less training time than
TAPT while both methods were task-specific. For
instance, TAPT required a total of seven hours of
training, while DoKTRa was completed in only
1.1 hours for the ChemProt task. This is because
DoKTra leverages the knowledge of an existing in-
domain PLM, thus requiring only a few fine-tuning
and distillation steps. The comparison of TAPT and
DoKTra using more advanced computing resources
is left as a future work.
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Dataset
DoKTra - CTT DoKTra

F1(%) LAT F1(%) LAT

ChemProt 76.20±0.20 193.75 77.42±0.04 139.79
GAD 77.26±0.94 331.50 78.86±0.19 268.95
DDI 82.16±0.63 131.62 82.30±0.41 98.97
i2b2 72.82±0.30 123.29 72.98±0.07 92.20

Table 5: Comparison of average classification perfor-
mance and loss values with or without teacher calibra-
tion. (CTT: calibrated teacher training)

4.5 Efficacy of combining calibration and
activation boundary distillation

We conducted an experiment to verify the posi-
tive effect of combining calibrated teacher training
and activation boundary distillation. Because the
entropy regularizer in calibrated teacher training
issues penalties based on the output probability dis-
tribution, it is difficult to intuitively understand how
it positively affects activation boundary distillation,
which uses hidden representation. Thus, we ablate
the calibrated teacher training steps in our frame-
work and compare the final performances and loss
values.

Irrespective of the use of an alternative version
(Equation 5) during the training, the extent to which
the activation pattern is distilled can be intuitively
observed by calculating the original “activation
transfer loss” (Equation 4). The value of Equation
4 directly refers to the number of neurons activated
differently than the teacher model. For instance, if
LAT = 500 for an ALBERT model (H=2,048), it
indicates that 500 of the 2,048 elements in the hid-
den representation vector exhibited signs different
to those of the teacher.

Table 5 shows the experimental results on four re-
lation extraction tasks with ALBERT students. As
shown in Table 5, the application of the calibrated
teacher training reduces the LAT and improves the
classification performance. In other words, cal-
ibration on the teacher training clearly aids the
supervision of the teacher in activation boundary
distillation, even though the output probability in-
formation is not directly used in distillation.

4.6 Ablation study

To observe how each component contributed to
the proposed framework, we conducted an abla-
tion study. We ablated two major components:
calibrated teacher training (CTT) and activation

Models F1 (%) Improvement

BioBERT-ft (teacher) 76.20±0.65

ALBERT-ft (student) 73.67±0.98

+KLD 76.40±0.36 +2.73
+CTT+KLD 76.87±0.49 +3.20
+ABD 76.20±0.24 +2.53
+CTT+ABD
(proposed method)

77.42±0.04 +3.75

ALBERT-ft+CPL 74.04±0.43 +0.37

Table 6: Ablation study on the ChemProt dataset.
(ft: fine-tuned, KLD: KL-divergence-based distilla-
tion, CTT: calibrated teacher training, ABD: activation
boundary distillation, ft+CPL: fine-tuned with confi-
dence penalty loss)

boundary distillation (ABD). The experiments
were performed on the ChemProt dataset, using
the ALBERT-xlarge model as the student architec-
ture. To ablate the calibrated teacher training, we
trained the teacher model using only LCE . We
compared the activation boundary distillation with
KL-divergence based distillation (KLD), which pe-
nalizes the difference between the output probabil-
ity distributions of the two models.

Table 6 presents the results of the ablation study.
As we proposed, applying both calibrated teacher
training and activation boundary distillation re-
sulted in a superior performance. In particular,
the calibrated teacher model was able to distil its
activation boundary to the student model much
more effectively, thus improving the performance
of the student model, as we hypothesized in the
previous section. Applying KL-divergence-based
distillation yielded positive results in terms of clas-
sification performance. Notably, calibrated teacher
training also improved the KL-divergence-based
distillation because it enabled the distillation of a
considerably more reliable output probability, as
reported in Menon et al. (2021). Note that applying
the confidence regularizer to the fine-tuning of the
student model only slightly improved the perfor-
mance, suggesting that the observed gains in our
model are only partially because of the calibration
regularizer.

4.7 Experimental results on financial domain

To verify the general applicability of our approach,
we conducted experiments on financial sentiment
classification tasks. Financial sentiment analysis
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Models #Params FPB FTS Avg. Retain
FinBERT-ft (teacher) 110M 85.70±0.59 85.88±0.48 85.79
ALBERT-ft (student) 60M 83.85±1.65 80.79±1.94 82.32
ALBERT-DoKTra 60M 86.25±0.19 86.08±1.82 86.17 100.44%
RoBERTa-ft (student) 125M 85.78±0.29 81.76±0.48 83.77
RoBERTa-DoKTra 125M 87.21±0.29 85.10±0.19 86.16 100.43%

Table 7: Experimental results of DoKTra framework on financial domain. (ft: fine-tuned)

aims to classify the polarity of financial-related
text, such as financial news or tweets. Since finan-
cial text usually contains specialized language, sev-
eral pre-training approaches have emerged (Araci,
2019; Yang et al., 2020; Liu et al., 2021) to fill the
gap between the general and financial domains.

In this study, we selected the FinBERT (Yang
et al., 2020) model as a teacher in the DoKTra
framework and evaluated our approach on two
tasks, the Financial PhraseBank (FPB) and Fin-
TextSen (FTS). The Financial PhraseBank (FPB)
(Malo et al., 2014) contains sentences from fi-
nancial news annotated for positive, neutral, and
negative sentiments. The FinTextSen (FTS) (Cor-
tis et al., 2017) consists of financial tweets from
Twitter and StockTwits with real-valued sentiment
scores. To transform it into a classification task,
we clustered the sentiment score into a 3-class la-
bel, following Daudert et al. (2018). The Financial
PhraseBank dataset contains 4,846 sentences, and
we set 10% of the examples as the test set while
preserving the label distribution. The FinTextSen
originally includes 2,488 tweets, but only 1,700
tweets are available now. We set 10% of the entire
data as the test set, which is similar to FPB.

As shown in Table 7, ALBERT-DoKTRa and
RoBERTa-DoKTRa outperformed the FinBERT-ft
teacher on financial downstream tasks. Note that
we used the RoBERTa-base model in this section
because of the training stability. This result sug-
gests that DoKTra can be applied regardless of
the domain and can be an efficient alternative to
in-domain pre-training.

5 Conclusion

In this study, we proposed the DoKTra framework
as a domain knowledge transfer method for PLMs.
The experimental results from the biomedical, clini-
cal, and financial domain downstream tasks demon-
strated that our proposed framework could trans-
fer domain-specific knowledge into a PLM, while

preserving its own expressive advantages without
any further pre-training with additional in-domain
data. We employed advanced models as the stu-
dent model and verified the future applicability
of our framework to emerging language models
by achieving even higher performances than the
teacher model. However, the limitations of our
approach are that it is task-specific and was evalu-
ated only in classification tasks. Our future studies
would focus on developing the proposed frame-
work as a task-agnostic method and evaluating it
on various tasks.
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A Appendix

A.1 Hyperparameter setting
In this section, we report the searching scheme and
actual values of the hyperparameters used by us.
In all cases, we set the batch size to the maximum
that a single GPU can process, with 128 being the
maximum sequence length.

In calibrated teacher training, we first select the
number of epochs and the learning rate as the de-
fault values of the BioBERT code and slightly

change the number of epochs (e) for the unre-
ported tasks from BioBERT. Then, we select the
strength of the confidence regularization (β1) by a
grid search in terms of the F1 score and expected
calibration error (ECE) on the development set.
The formula for calculating ECE is as follows:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi),

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i,

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)|,

where Bm is the m-th bin, ŷi and yi indicate the
predicted and true labels of the i-th sample in the
bin, and p̂i is the output prediction probability. n is
the number of total examples. A low ECE value im-
plies that the model generates an output probability
similar to its accuracy, and thus, is well-calibrated.
The actual values of the hyperparameters for the
calibrated teacher training are summarized in Table
A1.

In activation boundary distillation, we perform
a grid search to determine the number of epochs
(e1) and learning rate (lr1) for initial student fine-
tuning. Then, we conduct another grid search of the
learning rate (lr2), number of epochs (e2), weight
of the confidence penalty (β2), and loss switch rate
(γ) for the distillation and refinement steps. Both
searches are performed on the development set.
The actual values of the hyperparameters for the
ALBERT student are summarized in Table A2. For
the RoBERTa model as a student, we use the same
teacher with ALBERT. The hyperparameters of the
activation boundary distillation for the RoBERTa
student are searched in the same manner with the
ALBERT and summarized in Table A3.

A.2 Experimental details for financial domain

In this section, we report on the details of two fi-
nancial downstream task datasets, the experimental
details, and hyperparameters of the financial task
experiments.

we used the pre-trained FinBERT-base model
(L=12, H=768, A=12) with the original vocabulary.
We used ALBERT-xlarge (L=24, H=2048, A=32)
and RoBERTa-base (L=12, H=768, A=12) as the
students. The hyperparameters are searched in the
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same way as the experiments for the biomedical
domain. The actual values of the hyperparameters
for the calibrated teacher training and activation
boundary distillation with ALBERT and RoBERTa
are summarized in Tables A4, A5, and A6.

Dataset
CTT

e β1
ChemProt 5 0.3
GAD 3 0.7
DDI 5 0.3
i2b2 5 0.3
HoC 10 0

Table A1: The hyperparameters for calibrated teacher
training

Dataset
ABD

e1 lr1 e2 lr2 β2 γ

ChemProt 10 6e-6 10 1e-5 0.5 0.9
GAD 5 6e-6 10 1e-5 0.3 0.9
DDI 10 8e-6 10 1e-5 0.7 0.9
i2b2 10 1e-5 10 1e-5 0.5 0.9
HoC 10 1e-5 10 6e-6 0 0.6

Table A2: The hyperparameters for activation boundary
distillation of the ALBERT model

Dataset
ABD

e1 lr1 e2 lr2 β2 γ

ChemProt 5 1e-5 10 1e-5 0.5 0.8
GAD 5 1e-5 10 1e-5 0.5 0.9
DDI 10 1e-5 10 1e-5 0.7 0.8
i2b2 5 1e-5 10 1e-5 0.5 0.8
HoC 10 1e-5 10 6e-6 0 0.6

Table A3: The hyperparameters for activation boundary
distillation of the RoBERTa model.

Dataset
CTT
e β1

FPB 5 0.7
FTS 5 0.3

Table A4: The hyperparameters for calibrated teacher
training for the financial domain.

Dataset
ABD

e1 lr1 e2 lr2 β2 γ

FPB 10 6e-6 10 1e-5 0.0 0.9
FTS 10 6e-6 10 6e-6 0.1 0.8

Table A5: The hyperparameters for activation boundary
distillation of the ALBERT model for the financial do-
main.

Dataset
ABD

e1 lr1 e2 lr2 β2 γ

FPB 5 1e-5 10 1e-5 0.0 0.9
FTS 10 1e-5 10 6e-6 0.5 0.9

Table A6: The hyperparameters for activation boundary
distillation of the RoBERTa model for the financial
domain.
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